21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Definition 7.1.1 (Discrete convolution).<br />

Given x = (x 0 , ...,x n−1 ) T ∈ K n , h = (h 0 ,...,h n−1 ) T ∈ K n their discrete convolution<br />

(ger.: diskrete Faltung) is the vector y ∈ K 2n−1 with components<br />

n−1 ∑<br />

y k = h k−j x j , k = 0, ...,2n − 2 (h j := 0 for j < 0) . (7.1.4)<br />

j=0<br />

✎ Notation for discrete convolution (7.1.4): y = h ∗ x.<br />

Defining x j := 0 for j < 0, we find that discrete convolution is commutative:<br />

n−1 ∑ n−1 ∑<br />

y k = h k−j x j = h l x k−l , k = 0, ...,2n − 2 , (that is, h ∗ x = x ∗ h ) ,<br />

j=0<br />

l=0<br />

obtained by index transformation l ← k − j.<br />

Remark 7.1.3 (Convolution of sequences).<br />

The notion of a discrete convolution of Def. 7.1.1 naturally extends to sequences N 0 ↦→ K: the<br />

Ôº º½<br />

Note:<br />

p 0 , ...,p n−1 does not agree with the impulse response of the filter.<br />

Matrix notation:<br />

⎛ ⎞ ⎛<br />

⎞⎛<br />

⎞<br />

y 0 p 0 p n−1 p n−2 · · · · · · p 1 x 0<br />

⎜ ⎜⎜⎜⎜⎜⎜⎜⎝ .<br />

p 1 p 0 p n−1 .<br />

.<br />

p 2 p 1 p . 0<br />

..<br />

=<br />

. ... . .. . ..<br />

. (7.1.6)<br />

. .. . .. . ..<br />

⎟ ⎜<br />

. ⎠ ⎝ . . .. .<br />

⎟⎜<br />

⎟<br />

.. p n−1 ⎠⎝<br />

. ⎠<br />

y n−1 p n−1 · · · p 1 p 0 x n−1<br />

} {{ }<br />

=:P<br />

(P) ij = p i−j , 1 ≤ i,j ≤ n, with p j := p j+n for 1 − n ≤ j < 0.<br />

Ôº º½ ✸<br />

(discrete) convolution of two sequences (x j ) j∈N0 , (y j ) j∈N0 is the sequence (z j ) j∈N0 defined by<br />

z k :=<br />

k∑<br />

x k−j y j =<br />

j=0<br />

Example 7.1.4 (Linear filtering of periodic signals).<br />

k∑<br />

x j y k−j , k ∈ N 0 .<br />

n-periodic signal (n ∈ N) = sequence (x j ) j∈Z with x j+n = x j ∀j ∈ Z<br />

➣ n-periodic signal (x j ) j∈Z fixed by x 0 ,...,x n−1 ↔ vector x = (x 0 , ...,x n−1 ) T ∈ R n .<br />

j=0<br />

Whenever the input signal of a time-invariant filter is n-periodic, so will be the output signal. Thus, in<br />

the n-periodic setting, a causal linear time-invariant filter will give rise to a linear mapping R n ↦→ R n<br />

according to<br />

△<br />

Definition 7.1.2 (Discrete periodic convolution).<br />

The discrete periodic convolution of two n-periodic sequences (x k ) k∈Z , (y k ) k∈Z yields the n-<br />

periodic sequence<br />

n−1 ∑ n−1 ∑<br />

(z k ) := (x k ) ∗ n (y k ) , z k := x k−j y j = y k−j x j , k ∈ Z .<br />

j=0<br />

✎ notation for discrete periodic convolution: (x k ) ∗ n (y k )<br />

Since n-periodic sequences can be identified with vectors in K n (see above), we can also introduce<br />

the discrete periodic convolution of vectors:<br />

Def. 7.1.2 ➣ discrete periodic convolution of vectors: z = x ∗ n y ∈ K n , x,y ∈ K n .<br />

j=0<br />

Ôº º½<br />

n−1 ∑<br />

y k = p k−j x j for some p 0 ,...,p n−1 ∈ R . (7.1.5)<br />

j=0<br />

Example 7.1.5 (Radiative heat transfer).<br />

Beyond signal processing discrete periodic convolutions occur in mathematical models:<br />

Ôº º½

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!