21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.1 Shape preserving interpolation<br />

y<br />

y<br />

When reconstructing a quantitative dependence of quantities from measurements, first principles from<br />

physics often stipulated qualitative constraints, which translate into shape properties of the function<br />

f, e.g., when modelling the material law for a gas:<br />

t i pressure values, y i densities ➣ f positive & monotone.<br />

Given data: (t i , y i ) ∈ R 2 , i = 0, ...,n, n ∈ N, t 0 < t 1 < · · · < t n .<br />

Convex data<br />

Fig. 104t<br />

Convex function<br />

Fig. 105t<br />

Definition 9.1.1 (monotonic data).<br />

The data (t i ,y i ) are called monotonic when y i ≥ y i−1 or y i ≤ y i−1 , i = 1, ...,n.<br />

Ôº º½<br />

Definition 9.1.3 (Convex/concave function).<br />

f : I ⊂ R ↦→ R<br />

convex<br />

concave<br />

:⇔<br />

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)<br />

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)<br />

∀ 0 ≤ λ ≤ 1 ,<br />

∀ x,y ∈ I .<br />

Ôº½ º½<br />

Data (t i ,y i ), i = 0,...,n −→ interpolant f<br />

Definition 9.1.2 (Convex/concave data).<br />

The data {(t i , y i )} n i=0 are called convex (concave) if<br />

∆ j<br />

(≥)<br />

≤ ∆ j+1 , j = 1,...,n − 1 , ∆ j := y j − y j−1<br />

t j − t j−1<br />

, j = 1,...,n .<br />

Mathematical characterization of convex data:<br />

y i ≤ (t i+1 − t i )y i−1 + (t i − t i−1 )y i+1<br />

t i+1 − t i−1<br />

∀ i = 1, ...,n − 1,<br />

i.e., each data point lies below the line segment connecting the other data.<br />

✬<br />

Goal:<br />

✫<br />

shape preserving interpolation:<br />

positive data −→ positive interpolant f,<br />

monotonic data −→ monotonic interpolant f,<br />

convex data −→ convex interpolant f.<br />

More ambitious goal: local shape preserving interpolation: for each subinterval I = (t i , t i+j )<br />

positive data in I −→ locally positive interpolant f| I ,<br />

monotonic data in I −→ locally monotonic interpolant f| I ,<br />

convex data in I −→ locally convex interpolant f| I .<br />

Example 9.1.1 (Bad behavior of global polynomial interpolants).<br />

✩<br />

✪<br />

Ôº¼ º½<br />

Positive and monotonic data:<br />

t i -1.0000 -0.6400 -0.3600 -0.1600 -0.0400 0.0000 0.0770 0.1918 0.3631 0.6187 1.0000<br />

y i<br />

Ôº¾ º½<br />

0.0000 0.0000 0.0039 0.1355 0.2871 0.3455 0.4639 0.6422 0.8678 1.0000 1.0000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!