21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.2.1 Krylov spaces<br />

Definition 4.2.3 (Krylov space).<br />

For A ∈ R n,n , z ∈ R n , z ≠ 0, the l-th Krylov space is defined as<br />

{<br />

}<br />

K l (A,z) := Span z,Az, . ..,A l−1 z .<br />

Assume:<br />

A-orthogonal basis {p 1 ,...,p n } of R n available, such that<br />

Span {p 1 ,...,p l } = K l (A,r) .<br />

(Efficient) successive computation of x (l) becomes possible<br />

(LSE (4.2.3) becomes diagonal !)<br />

Equivalent definition: K l (A,z) = {p(A)z: p polynomial of degree ≤ l}<br />

✬<br />

Lemma 4.2.4. The subspaces U k ⊂ R n , k ≥ 1, defined by (4.2.1) and (4.2.2) satisfy<br />

}<br />

U k = Span<br />

{r 0 ,Ar 0 , ...,A k−1 r 0 = K k (A,r 0 ) ,<br />

where r 0 = b − Ax (0) is the initial residual.<br />

✫<br />

Proof. (by induction) Obviously AK k (A,r 0 ) ⊂ K k+1 (A,r 0 ). In addition<br />

r k = b − A(x (0) + z) for some z ∈ U k ⇒ r k = }{{}<br />

r 0 − }{{} Az<br />

∈K k+1 (A,r 0 ) ∈K k+1 (A,r 0 )<br />

✩<br />

✪<br />

º¾<br />

.<br />

Ôº¿¿<br />

Input: : initial guess x (0) ∈ R n<br />

Given: : A-orthogonal bases {p 1 , . ..,p l } of K l (A,r 0 ), l = 1,...,n<br />

Output: : approximate solution x (l) ∈ R n of Ax = b<br />

Task:<br />

r 0 := b − Ax (0) ;<br />

for j = 1 to l do { x (j) := x (j−1) + pT j r 0<br />

p T j Ap p j }<br />

j<br />

(4.2.4)<br />

Efficient computation of A-orthogonal vectors {p 1 ,...,p l } spanning K l (A,r 0 ) during the<br />

iteration.<br />

Ôº¿ º¾<br />

Since U k+1 = Span {U k ,r k }, we obtain U k+1 ⊂ K k+1 (A,r 0 ). Dimensional considerations based<br />

on Lemma 4.2.1 finish the proof.<br />

✷<br />

4.2.2 Implementation of CG<br />

Lemma 4.2.1 implies orthogonality p j ⊥ r m := b − Ax (m) , 1 ≤ j ≤ m ≤ l<br />

p T j (b − Ax(m) ) = p T j<br />

(<br />

b} −{{ Ax (0) } − ∑ m<br />

k=1<br />

=r 0<br />

p T k r )<br />

0<br />

p T k Ap Ap k = 0 . (4.2.5)<br />

k<br />

(4.2.5) ⇒ Idea: Gram-Schmidt orthogonalization, of residuals r j := b − Ax (j)<br />

w.r.t. A-inner product:<br />

Assume:<br />

basis {p 1 ,...,p l }, l = 1, ...,n, of K l (A,r) available<br />

(4.2.1) ➣ set x (l) = x (0) + γ 1 p 1 + · · · + γ l p k .<br />

j∑<br />

p 1 := r 0 , p j+1 := (b − Ax (j) p T ) − k Ar j<br />

} {{ } p<br />

=:r T j k=1 k Ap p k , j = 1,...,l − 1 . (4.2.6)<br />

k<br />

For ψ(γ 1 , ...,γ l ) := J(x (0) + γ 1 p 1 + · · · + γ l p l ) holds<br />

(4.2.1) ⇔ ∂ψ<br />

∂γ j<br />

= 0 , j = 1,...,l .<br />

This leads to a linear system of equations by which the coefficients γ j can be computed:<br />

⎛<br />

⎝ pT 1 Ap 1 · · · p T 1 Ap ⎞⎛<br />

l<br />

.<br />

. ⎠⎝ γ ⎞ ⎛<br />

1<br />

. ⎠ = ⎝ pT 1 r<br />

⎞<br />

. ⎠ . (4.2.3)<br />

p T l Ap 1 · · · p T l Ap l γ l p T l r<br />

Ôº¿ º¾<br />

Great simplification, if {p 1 ,...,p l } A-orthogonal basis of K l (A,r): p T j Ap i = 0 for i ≠ j.<br />

✬<br />

Lemma 4.2.5 (Bases for Krylov spaces in CG).<br />

If they do not vanish, the vectors p j , 1 ≤ j ≤ l, and r j := b − Ax (j) , 0 ≤ j ≤ l, from (4.2.4),<br />

(4.2.6) satisfy<br />

(i) {p 1 , ...,p j } is A-orthogonal basis von K j (A,r 0 ),<br />

(ii) {r 0 ,...,r j−1 } is orthogonal basis of K j (A,r 0 ), cf. Cor. 4.2.2<br />

✫<br />

✩<br />

Ôº¿ º¾<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!