21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

|quadrature error|<br />

10 0 <strong>Numerical</strong> quadrature of function 1/(1+(5t) 2 )<br />

10 −2<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

10 −14<br />

Equidistant Newton−Cotes quadrature<br />

Chebyshev quadrature<br />

Gauss quadrature<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Number of quadrature nodes<br />

10 0 <strong>Numerical</strong> quadrature of function sqrt(t)<br />

2 on [0, 1] quadrature error, f 1 (t) := 1<br />

1+(5t) quadrature error, f 2 (t) := √ t on [0, 1]<br />

10 0 10 1<br />

Number of quadrature nodes<br />

Asymptotic behavior of quadrature error ǫ n := ∣ ∫ 1<br />

0 f(t) dt − Q n (f) ∣ for "‘n → ∞”:<br />

➣<br />

|quadrature error|<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 −6<br />

Equidistant Newton−Cotes quadrature<br />

Chebyshev quadrature<br />

Gauss quadrature<br />

exponential convergence ǫ n ≈ O(q n ), 0 < q < 1, for C ∞ -integrand f 1 ❀ : Newton-Cotes<br />

quadrature : q ≈ 0.61, Clenshaw-Curtis quadrature : q ≈ 0.40, Gauss-Legendre quadrature :<br />

q ≈ 0.27<br />

Ôº¼ ½¼º<br />

19 ’ Gauss quadrature ’ ,3) ;<br />

20 eqdp1 = p o l y f i t ( eqdres ( : , 1 ) , log ( abs ( eqdres ( : , 2 )−exact ) ) ,1)<br />

21 chbp1 = p o l y f i t ( chbres ( : , 1 ) , log ( abs ( chbres ( : , 2 )−exact ) ) ,1)<br />

22 gaup1 = p o l y f i t ( gaures ( : , 1 ) , log ( abs ( gaures ( : , 2 )−exact ) ) ,1)<br />

23 p r i n t −depsc2 ’ . . / PICTURES/ numquaderr1 . eps ’ ;<br />

24<br />

25 figure ( ’Name ’ , ’ s q r t ( t ) ’ ) ;<br />

26 exact = 2 / 3 ;<br />

27 eqdres = numquad( i n l i n e ( ’ s q r t ( x ) ’ ) ,0 ,1 ,N, ’ e q u i d i s t a n t ’ ) ;<br />

28 chbres = numquad( i n l i n e ( ’ s q r t ( x ) ’ ) ,0 ,1 ,N, ’ Chebychev ’ ) ;<br />

29 gaures = numquad( i n l i n e ( ’ s q r t ( x ) ’ ) ,0 ,1 ,N, ’ Gauss ’ ) ;<br />

30 loglog ( eqdres ( : , 1 ) , abs ( eqdres ( : , 2 )−exact ) , ’ b+− ’ , . . .<br />

31 chbres ( : , 1 ) ,abs ( chbres ( : , 2 )−exact ) , ’m+− ’ , . . .<br />

32 gaures ( : , 1 ) ,abs ( gaures ( : , 2 )−exact ) , ’ r+− ’ ) ;<br />

33 set ( gca , ’ f o n t s i z e ’ ,12) ;<br />

34 axis ( [ 1 25 0.000001 1 ] ) ;<br />

35 t i t l e ( ’ <strong>Numerical</strong> quadrature o f f u n c t i o n s q r t ( t ) ’ ) ;<br />

36 xlabel ( ’ { \ b f Number o f quadrature nodes } ’ , ’ f o n t s i z e ’ ,14) ;<br />

37 ylabel ( ’ { \ b f | quadrature e r r o r | } ’ , ’ f o n t s i z e ’ ,14) ;<br />

38 legend ( ’ E q u i d i s t a n t Newton−Cotes quadrature ’ , . . .<br />

39 ’ Clenshaw−C u r t i s quadrature ’ , . . .<br />

40 ’ Gauss quadrature ’ ,1) ;<br />

Ôº½½ ½¼º<br />

41 eqdp2 = p o l y f i t ( log ( eqdres ( : , 1 ) ) , log ( abs ( eqdres ( : , 2 )−exact ) ) ,1)<br />

➣<br />

algebraic convergence ǫn ≈ O(n −α ), α > 0, for integrand f 2 with singularity at t = 0 ❀<br />

Newton-Cotes quadrature : α ≈ 1.8, Clenshaw-Curtis quadrature : α ≈ 2.5, Gauss-Legendre<br />

quadrature : α ≈ 2.7<br />

Code 10.4.8: tracking errors on quadrature rules<br />

1 function numquaderrs ( )<br />

2 % <strong>Numerical</strong> quadrature on [0,1]<br />

3 N = 20;<br />

4<br />

5 figure ( ’Name ’ , ’ 1 /(1+(5 t ) ^2) ’ ) ;<br />

6 exact = atan ( 5 ) / 5 ;<br />

42 chbp2 = p o l y f i t ( log ( chbres ( : , 1 ) ) , log ( abs ( chbres ( : , 2 )−exact ) ) ,1)<br />

43 gaup2 = p o l y f i t ( log ( gaures ( : , 1 ) ) , log ( abs ( gaures ( : , 2 )−exact ) ) ,1)<br />

44 p r i n t −depsc2 ’ . . / PICTURES/ numquaderr2 . eps ’ ;<br />

✸<br />

7 eqdres = numquad( i n l i n e ( ’ 1 . / ( 1 + ( 5∗ x ) . ^ 2 ) ’ ) ,0 ,1 ,N, ’ e q u i d i s t a n t ’ ) ;<br />

8 chbres = numquad( i n l i n e ( ’ 1 . / ( 1 + ( 5∗ x ) . ^ 2 ) ’ ) ,0 ,1 ,N, ’ Chebychev ’ ) ;<br />

9 gaures = numquad( i n l i n e ( ’ 1 . / ( 1 + ( 5∗ x ) . ^ 2 ) ’ ) ,0 ,1 ,N, ’ Gauss ’ ) ;<br />

10 semilogy ( eqdres ( : , 1 ) ,abs ( eqdres ( : , 2 )−exact ) , ’ b+− ’ , . . .<br />

11 chbres ( : , 1 ) ,abs ( chbres ( : , 2 )−exact ) , ’m+− ’ , . . .<br />

12 gaures ( : , 1 ) ,abs ( gaures ( : , 2 )−exact ) , ’ r+− ’ ) ;<br />

13 set ( gca , ’ f o n t s i z e ’ ,12) ;<br />

14 t i t l e ( ’ <strong>Numerical</strong> quadrature o f f u n c t i o n 1 /(1+(5 t ) ^2) ’ ) ;<br />

15 xlabel ( ’ { \ b f Number o f quadrature nodes } ’ , ’ f o n t s i z e ’ ,14) ;<br />

16 ylabel ( ’ { \ b f | quadrature e r r o r | } ’ , ’ f o n t s i z e ’ ,14) ;<br />

17 legend ( ’ E q u i d i s t a n t Newton−Cotes quadrature ’ , . . .<br />

18 ’ Clenshaw−C u r t i s quadrature ’ , . . .<br />

Ôº½¼ ½¼º<br />

10.5 Oscillatory Integrals<br />

10.6 Adaptive Quadrature<br />

Example 10.6.1 (Rationale for adaptive quadrature).<br />

Consider composite trapezoidal rule (10.3.2) on mesh M := {a = x 0 < x 1 < · · · < x m = b}:<br />

Ôº½¾ ½¼º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!