21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In other words, roundoff errors may badly affect the length of the solution w, but not its direction.<br />

Practice: If, in the course of Gaussian elimination/LU-factorization a zero pivot element is really encountered,<br />

then we just replace it with eps, in order to avoid inf values!<br />

Thm. 5.3.2 ➣ Convergence of shifted inverse iteration for A H = A:<br />

Asymptotic linear convergence, Rayleigh quotient → λ j with rate<br />

|λ j − α|<br />

min{|λ i − α|, i ≠ j} with λ j ∈ σ(A) , |α − λ j | ≤ |α − λ| ∀λ ∈ σ(A) .<br />

Idea:<br />

Extremely fast for α ≈ λ j !<br />

Algorithm 5.3.16 (Rayleigh quotient iteration).<br />

Rayleigh<br />

quotient<br />

iteration<br />

(for normal A ∈ K n,n )<br />

preserves sparsity,<br />

Sect. 2.6.2<br />

see<br />

A posteriori adaptation of shift<br />

Use α := ρ A (z (k−1) ) in k-th step of inverse iteration.<br />

MATLAB-CODE : Rayleigh quotient iteration<br />

function [z,lmin] = rqui(A,tol,maxit)<br />

alpha = 0; n = size(A,1);<br />

z = rand(size(A,1),1); z = z/norm(z);<br />

for i=1:maxit<br />

z = (A-alpha*speye(n))\z;<br />

z = z/norm(z); lmin=dot(A*z,z);<br />

if (abs(alpha-lmin) < tol), break; end;<br />

alpha = lmin;<br />

end<br />

△<br />

(5.3.17)<br />

Ôº½ º¿<br />

10 −5<br />

10 −10<br />

10 −15<br />

1 2 3 4 5 6 7 8 9 10<br />

10 0 k<br />

k |λ min − ρ A (z (k) )|<br />

∥<br />

∥z (k) − x j<br />

∥ ∥∥<br />

1 0.09381702342056 0.20748822490698<br />

2 0.00029035607981 0.01530829569530<br />

3 0.00000000001783 0.00000411928759<br />

4 0.00000000000000 0.00000000000000<br />

5 0.00000000000000 0.00000000000000<br />

d = (1:10)’;<br />

n = length(d);<br />

Z = diag(sqrt(1:n),0)+ones(n,n);<br />

[Q,R] = qr(Z);<br />

A = Q*diag(d,0)*Q’;<br />

o : |λ min − ρ A ∥(z (k) )|<br />

∥<br />

∗ : ∥z (k) ∥∥,<br />

− x j λmin = λ j , x j ∈ Eig A (λ j ),<br />

∥ ∥<br />

: ∥x ∥2 j = 1<br />

✬<br />

Theorem 5.3.6. If A = A H , then ρ A (z (k) )<br />

converges locally of order 3 (→ Def. 3.1.7) to<br />

the smallest eigenvalue (in modulus), when<br />

z (k) are generated by the Rayleigh quotient<br />

iteration (5.3.17).<br />

✫<br />

5.3.3 Preconditioned inverse iteration (PINVIT)<br />

Task:<br />

given A ∈ K n,n , find smallest (in modulus) eigenvalue of regular A ∈ K n,n<br />

and (an) associated eigenvector.<br />

Options: inverse iteration (→ Code 5.3.13) and Rayleigh quotient iteration (5.3.17).<br />

? What if direct solution of Ax = b not feasible ?<br />

✩<br />

Ôº¿ º¿<br />

✪<br />

✸<br />

Drawback compared with Code 5.3.13: reuse of LU-factorization no longer possible.<br />

Even if LSE nearly singular, stability of Gaussian elimination guarantees correct direction of z, see<br />

discussion in Rem. 5.3.15.<br />

This can happen, in case<br />

• for large sparse A the amount of fill-in exhausts memory, despite sparse elimination techniques<br />

(→ Sect. 2.6.3),<br />

Example 5.3.17 (Rayleigh quotient iteration).<br />

• A is available only through a routine<br />

evalA(x) providing A×vector.<br />

Monitored:<br />

iterates of Rayleigh quotient iteration (5.3.17) for s.p.d. A ∈ R n,n<br />

Ôº¾ º¿<br />

We expect that an approximate solution of the linear systems of equations encountered during<br />

inverse iteration should be sufficient, because we are dealing with approximate eigenvectors anyway.<br />

Ôº º¿

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!