21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Note: sensitivity gauge depends on the chosen norm !<br />

Example 2.5.11 (Intersection of lines in 2D).<br />

In distance metric:<br />

2.6 Sparse Matrices<br />

A classification of matrices:<br />

Dense matrices (ger.: vollbesetzt)<br />

sparse matrices (ger.: dünnbesetzt)<br />

nearly orthogonal intersection: well-conditioned<br />

glancing intersection: ill-conditioned<br />

Notion 2.6.1 (Sparse matrix). A ∈ K m,n , m, n ∈ N, is sparse, if<br />

nnz(A) := #{(i,j) ∈ {1, . ..,m} × {1, ...,n}: a ij ≠ 0} ≪ mn .<br />

Sloppy parlance: matrix sparse :⇔ “almost all” entries = 0 /“only a few percent of” entries ≠ 0<br />

Hessian normal form of line #i, i = 1, 2:<br />

L i = {x ∈ R 2 : x T n i = d i } , n i ∈ R 2 , d i ∈ R .<br />

( ) ( )<br />

n T<br />

intersection: 1 d1<br />

n<br />

} {{ T x = ,<br />

d<br />

2 2<br />

} } {{ }<br />

=:A =:b<br />

n i ˆ= (unit) direction vectors, d i ˆ= distance to origin.<br />

Ôº½¿ ¾º<br />

A more rigorous “mathematical” definition:<br />

Definition 2.6.2 (Sparse matrices).<br />

Given a strictly increasing sequences m : N ↦→ N, n : N ↦→ N, a family (A (l) ) l∈N of matrices<br />

with A (l) ∈ K m l,n l is sparse (opposite: dense), if<br />

nnz(A (l) ) := #{(i,j) ∈ {1, ...,m i } × {1, ...,n i }: a (l)<br />

Ôº½¿ ¾º<br />

ij ≠ 0} = O(n i + m i ) for i → ∞ .<br />

Code 2.5.12: condition numbers of 2 × 2 matrices<br />

1 r = [ ] ;<br />

2 for phi=pi / 2 0 0 : pi / 1 0 0 : pi /2<br />

3 A = [ 1 , cos ( phi ) ; 0 , sin ( phi ) ] ;<br />

4 r = [ r ; phi ,<br />

cond (A) ,cond (A, ’ i n f ’ ) ] ;<br />

5 end<br />

6 plot ( r ( : , 1 ) , r ( : , 2 ) , ’ r−’ ,<br />

r ( : , 1 ) , r ( : , 3 ) , ’ b−−’ ) ;<br />

7 xlabel ( ’ { \ b f angle o f n_1 ,<br />

n_2 } ’ , ’ f o n t s i z e ’ ,14) ;<br />

8 ylabel ( ’ { \ b f c o n d i t i o n<br />

numbers } ’ , ’ f o n t s i z e ’ ,14) ;<br />

9 legend ( ’2−norm ’ , ’max−norm ’ ) ;<br />

10 p r i n t −depsc2<br />

’ . . / PICTURES/ l i n e s e c . eps ’ ;<br />

condition numbers<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

2−norm<br />

max−norm<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

angle of n 1<br />

, n 2<br />

Fig. 10<br />

✸<br />

Simple example: families of diagonal matrices (→ Def. 2.2.1)<br />

Example 2.6.1 (Sparse LSE in circuit modelling).<br />

Modern electric circuits (VLSI chips):<br />

10 5 − 10 7 circuit elements<br />

• Each element is connected to only a few nodes<br />

• Each node is connected to only a few elements<br />

[In the case of a linear circuit]<br />

nodal analysis ➤ sparse circuit matrix<br />

✸<br />

Heuristics:<br />

Ôº½¿ ¾º<br />

cond(A) ≫ 1 ↔ columns/rows of A “almost linearly dependent”<br />

Another important context in which sparse matrices usually arise:<br />

☛ discretization of boundary value problems for partial differential equations (→ 4th semester<br />

course “<strong>Numerical</strong> treatment of PDEs”<br />

Ôº½¼ ¾º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!