21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MATLAB-CODE: <strong>Numerical</strong> differentiation of exp(x)<br />

log 10 (h) relative error<br />

h = 0.1; x = 0.0;<br />

-1 0.05170918075648<br />

for i = 1:16<br />

-2 0.00501670841679<br />

-3 0.00050016670838<br />

df = (exp(x+h)-exp(x)) /h;<br />

-4 0.00005000166714<br />

-5 0.00000500000696<br />

fprintf(’%d %16.14f\n’,i,df-1);<br />

-6 0.00000049996218<br />

h = h*0.1;<br />

-7 0.00000004943368<br />

end<br />

-8 -0.00000000607747<br />

-9 0.00000008274037<br />

Obvious cancellation → error amplification<br />

-10 0.00000008274037<br />

-11 0.00000008274037<br />

⎫<br />

-12 0.00008890058234<br />

f ′ f(x + h) − f(x) ⎬<br />

-13 -0.00079927783736<br />

(x) − → 0<br />

h<br />

Impact of roundoff → ∞ ⎭ for h → 0 . -14 -0.00079927783736<br />

-15 0.11022302462516<br />

-16 -1.00000000000000<br />

What is this mysterious cancellation (ger.: Auslöschung) ?<br />

errors<br />

Cancellation<br />

ˆ=<br />

Subtraction of almost equal numbers<br />

(➤ extreme amplification of relative errors)<br />

Example 3.4.8 (cancellation in decimal floating point arithmetic).<br />

x, y afflicted with relative errors ≈ 10 −7 :<br />

Analysis for f(x) = exp(x):<br />

x = 0.123467∗<br />

← 7th digit perturbed<br />

y = 0.123456∗<br />

← 7th digit perturbed<br />

x − y = 0.000011∗ = 0.11∗000 · 10 −4 ← 3rd digit perturbed<br />

Ôº¿¼ ¿º<br />

padded zeroes<br />

Ôº¿½½ ¿º<br />

✸<br />

3.4.2 Convergence of Newton’s method<br />

⇒<br />

e x+h (1 + δ 1 ) − e x (1 + δ 2 )<br />

df =<br />

( h )<br />

= e x e h − 1<br />

+ δ 1e h − δ 2<br />

(<br />

h h<br />

)<br />

|df| ≤ e x e h −1<br />

h +eps 1+eh<br />

h<br />

correction factors take into account roundoff:<br />

(→ "‘axiom of roundoff analysis”, Ass. 2.4.2)<br />

|δ 1 |, |δ 2 | ≤ eps .<br />

1 + O(h) O(h −1 ) für h → 0<br />

Newton iteration (3.4.1) ˆ= fixed point iteration (→ Sect. 3.2) with<br />

Φ(x) = x − DF(x) −1 F(x) .<br />

[“product rule” : DΦ(x) = I − D(DF(x) −1 )F(x) − DF(x) −1 DF(x) ]<br />

F(x ∗ ) = 0 ⇒ DΦ(x ∗ ) = 0 .<br />

relative error:<br />

e x ∣<br />

−df ∣∣∣<br />

∣ e x ≈ h + 2eps<br />

h → min for h = √ 2eps .<br />

√<br />

In double precision: 2eps = 2.107342425544702 · 10 −8<br />

Lemma 3.2.7 suggests conjecture:<br />

Local quadratic convergence of Newton’s method, if DF(x ∗ ) regular<br />

Example 3.4.9 (Convergence of Newton’s method).<br />

✸<br />

Ôº¿½¼ ¿º<br />

Ex. 3.4.1 cnt’d: record of iteration errors, see Code 3.4.1:<br />

Ôº¿½¾ ¿º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!