21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0 2 4 6 8 10 12 14 16<br />

value of ∥ ∥ F(x<br />

(k) )<br />

∥ ∥<br />

2<br />

18<br />

16<br />

14<br />

2<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16 10−16<br />

Damped Newton method<br />

Convergence behaviour of the Newton method:<br />

10 2<br />

10 0<br />

10 −2<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

10 −14<br />

norm of grad Φ(x (k) )<br />

value of ∥ ∥ F(x<br />

(k) )<br />

∥ ∥<br />

2<br />

18<br />

16<br />

14<br />

2<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16 10−16<br />

Not−damped Newton method<br />

10 4<br />

10 2<br />

10 0<br />

10 −2<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

10 −14<br />

norm of grad Φ(x (k) )<br />

Idea: damping of the Gauss-Newton correction in (6.5.7) using a penalty term<br />

∥<br />

instead of ∥F(x (k) ) + DF(x (k) )s∥ 2<br />

∥<br />

minimize ∥F(x (k) ) + DF(x (k) )s∥ 2 + λ ‖s‖ 2 2 .<br />

λ > 0 ˆ= penalty parameter (how to choose it ? → heuristic)<br />

⎧<br />

∥<br />

10 , if ∥F(x ⎪⎨<br />

(k) ) ∥ ≥ 10 ,<br />

2 ∥<br />

λ = γ ∥F(x (k) ∥<br />

) ∥ , γ := 1 , if 1 < ∥F(x (k) ) ∥ < 10 ,<br />

2 2<br />

⎪⎩ ∥<br />

0.01 , if ∥F(x (k) ) ∥ ≤ 1 . 2<br />

Modified (regularized) equation for the corrector s:<br />

(<br />

)<br />

DF(x (k) ) T DF(x (k) ) + λI s = −DF(x (k) )F(x (k) ) . (6.5.8)<br />

initial value (1.8, 1.8, 0.1) T (red curve) ➤ Newton method caught in local minimum,<br />

initial value (1.5, 1.5, 0.1) T (cyan curve) ➤ fast (locally quadratic) convergence.<br />

Ôº¿ º<br />

Ôº¿ º<br />

0.9<br />

10 0<br />

0.8<br />

10 −2<br />

Gauss-Newton method:<br />

initial value (1.8, 1.8, 0.1) T (red curve),<br />

initial value (1.5, 1.5, 0.1) T (cyan curve),<br />

convergence in both cases.<br />

Notice:<br />

linear convergence.<br />

value of ∥ ∥ F(x<br />

(k) )<br />

∥ ∥<br />

2<br />

0.7<br />

2<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

10 −14<br />

norm of the corrector<br />

7 Filtering Algorithms<br />

Perspective of signal processing:<br />

vector x ∈ R n ↔ finite discrete (= sampled) signal.<br />

0<br />

0 2 4 6 8 10 12 14 16 10−16<br />

Gauss−Newton method<br />

✸<br />

X = X(t) ˆ= time-continuous signal, 0 ≤ t ≤ T ,<br />

“sampling”: x j = X(j∆t) , j = 0, ...,n − 1,<br />

n ∈ N, n∆t ≤ T .<br />

∆t > 0 ˆ= time between samples.<br />

6.5.3 Trust region method (Levenberg-Marquardt method)<br />

Sampled values arranged in a vector x =<br />

(x<br />

As in the case of Newton’s method for non-linear systems of equations, see Sect. 3.4.4: often overshooting<br />

of Gauss-Newton corrections occurs.<br />

Ôº¿ º<br />

0 , ...,x n−1 ) T ∈ R n .<br />

Note: vector indices 0, ...,n − 1 !<br />

(“C-style indexing”).<br />

Remedy as in the case of Newton’s method: damping.<br />

X = X(t)<br />

x 0<br />

x<br />

x n−2 1<br />

x<br />

x n−1 2<br />

t 0 t 1 t 2 t n−2 t n−1 Fig. time 90<br />

Ôº¼ º½

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!