21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

✬<br />

Residuals r 0 ,...,r m−1 generated in CG iteration, Alg. 4.2.1 applied to Ax = z with x (0) = 0,<br />

provide orthogonal basis for K m (A,z) (, if r k ≠ 0).<br />

✫<br />

✩<br />

✪<br />

Total computational effort for l steps of Lanczos process, if A has at most k non-zero entries per row:<br />

O(nkl)<br />

Inexpensive Ritz projection of Ax = λx onto K m (A,z):<br />

orthogonal matrix<br />

( )<br />

VmAV T r0<br />

m x = λx , V m :=<br />

‖r 0 ‖ ,..., r m−1<br />

∈ R n,m . (5.4.6)<br />

‖r m−1 ‖<br />

Note: Code 5.4.2 assumes that no residual vanishes. This could happen, if z 0 exactly belonged<br />

to the span of a few eigenvectors. However, in practical computations inevitable round-off errors will<br />

always ensure that the iterates do not stay in an invariant subspace of A, cf. Rem. 5.3.7.<br />

recall: residuals generated by short recursions, see Alg. 4.2.1<br />

✬<br />

Lemma 5.4.1 (Tridiagonal Ritz projection from CG residuals).<br />

V T mAV m is a tridiagonal matrix.<br />

✫<br />

✩<br />

✪<br />

Convergence (what we expect from the above considerations) → [13, Sect. 8.5])<br />

In l-th step: λ n ≈ µ (l)<br />

l , λ n−1 ≈ µ (l)<br />

l−1 ,..., λ 1 ≈ µ (l)<br />

1 ,<br />

σ(T l ) = {µ (l)<br />

1 , ...,µ(l) l }, µ (l)<br />

1 ≤ µ (l)<br />

2 ≤ · · · ≤ µ (l)<br />

l .<br />

Proof. Lemma 4.2.5: {r 0 ,...,r l−1 } is an orthogonal basis of K l (A,r 0 ), if all the residuals are nonzero.<br />

As AK l−1 (A,r 0 ) ⊂ K l (A,r 0 ), we conclude the orthogonalityr T mAr j for all j = 0, ...,m−2.<br />

Ôº º<br />

the assertion of the theorem follows. ✷<br />

Since<br />

(V T mAV m<br />

)<br />

ij = rT i−1 Ar j−1 , 1 ≤ i,j ≤ m ,<br />

⎛<br />

⎞<br />

α 1 β 1<br />

β 1 α 2 β 2<br />

β 2 α . 3<br />

..<br />

Vl H .<br />

AV l =<br />

.. . ..<br />

=: T l ∈ K k,k [tridiagonal matrix]<br />

...<br />

⎜<br />

⎟<br />

⎝<br />

... ... β k−1 ⎠<br />

β k−1 α k<br />

Example 5.4.4 (Lanczos process for eigenvalue computation).<br />

A from Ex. 5.4.2<br />

A = gallery(’minij’,100);<br />

|Ritz value−eigenvalue|<br />

10 2<br />

10 1<br />

10 0<br />

10 0<br />

10 −1<br />

10 −2<br />

error in Ritz values<br />

10 −2<br />

10 −4<br />

10 −6<br />

10 −8<br />

Ôº º<br />

10 2 step of Lanzcos process<br />

10 4 step of Lanzcos process<br />

Code 5.4.3: Lanczos process<br />

1 function [ V, alph , bet ] = lanczos (A, k , z0 )<br />

Algorithm for computingV l andT l :<br />

2 V = z0 / norm( z0 ) ;<br />

Lanczos process<br />

3<br />

4<br />

alph=zeros ( k , 1 ) ;<br />

bet = zeros ( k , 1 ) ;<br />

Computational effort/step:<br />

5 for j =1: k<br />

1× A×vector<br />

2 dot products<br />

2 AXPY-operations<br />

1 division<br />

6 p = A∗V ( : , j ) ; alph ( j ) = dot ( p , V ( : , j ) ) ;<br />

7 w = p − alph ( j ) ∗V ( : , j ) ;<br />

8 i f ( j > 1) , w = w − bet ( j −1)∗V ( : , j −1) ; end ;<br />

9 bet ( j ) = norm(w) ; V = [ V,w/ bet ( j ) ] ;<br />

Ôº º<br />

10 end<br />

11 bet = bet ( 1 : end−1) ;<br />

10 −3<br />

10 −4<br />

λ n<br />

λ n−1<br />

λ n−2<br />

λ n−3<br />

Fig. 77<br />

0 5 10 15 20 25 30<br />

Observation:<br />

10 −10<br />

10 −12<br />

10 −14<br />

λ n<br />

λ n−1<br />

λ n−2<br />

λ n−3<br />

Fig. 78<br />

0 5 10 15<br />

same as in Ex. 5.4.2, linear convergence of Ritz values to eigenvalues.<br />

However for A ∈ R 10,10 , a ij = min{i,j} good initial convergence, but sudden “jump” of Ritz values<br />

off eigenvalues!<br />

Conjecture: Impact of roundoff errors, cf. Ex. 4.2.4<br />

Ôº º<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!