21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where<br />

∫<br />

|I| 2n+2 ∫<br />

=<br />

vol<br />

I (n + 1)! (n) (C t,τ ) |f (n+1) (τ)| 2 dτdt ,<br />

I } {{ }<br />

≤2 (n−1)/2 /n!<br />

Idea: choose nodes t 0 , ...,t n such that<br />

‖w‖ L ∞ (I) is minimal!<br />

Equivalent to finding q ∈ P n+1 , with leading coefficient = 1, such that ‖q‖ L ∞ (I) is<br />

minimal.<br />

Choice of t 0 , ...,t n = zeros of q (caution: t j must belong to I).<br />

S n+1 := {x ∈ R n+1 : 0 ≤ x n ≤ x n−1 ≤ · · · ≤ x 1 ≤ 1} (unit simplex) ,<br />

C t,τ := {x ∈ S n+1 : t 0 + x 1 (t 1 − t 0 ) + · · · + x n (t n − t n−1 ) + x n+1 (t − t n ) = τ} .<br />

This gives the bound for the L 2 -norm of the error:<br />

Notice:<br />

⇒ ‖f − I T (f)‖ L 2 (I) ≤ 2(n−1)/4 |I| n+1 ( ∫<br />

√ |f (n+1) (τ)| 2 1/2<br />

dτ)<br />

.<br />

(n + 1)!n! I<br />

(8.4.3)<br />

∥<br />

f ↦→ ∥f (n)∥ ∥ ∥L 2 (I) defines a seminorm on Cn+1 (I)<br />

(Sobolev-seminorm, measure of the smoothness of a function).<br />

△<br />

Heuristic: • t ∗ extremal point of q ➙ |q(t ∗ )| = ‖q‖ L ∞ (I) ,<br />

• q has n + 1 zeros in I,<br />

• |q(−1)| = |q(1)| = ‖q‖ L ∞ (I) .<br />

Definition 8.5.1 (Chebychev polynomial).<br />

The n th Chebychev polynomial is T n (t) := cos(n arccost), −1 ≤ t ≤ 1.<br />

Ôº º<br />

Ôº½ º<br />

8.5 Chebychev Interpolation<br />

1<br />

0.8<br />

1<br />

0.8<br />

n=5<br />

n=6<br />

n=7<br />

n=8<br />

n=9<br />

0.6<br />

0.6<br />

Perspective:<br />

function approximation by polynomial interpolation<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

➣<br />

✓<br />

✒<br />

Freedom to choose interpolation nodes judiciously<br />

✏<br />

✑<br />

T n<br />

(t)<br />

0<br />

−0.2<br />

−0.4<br />

n=0<br />

n=1<br />

T n<br />

(t)<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

n=2<br />

−0.6<br />

n=3<br />

−0.8<br />

n=4<br />

−0.8<br />

−1<br />

−1<br />

8.5.1 Motivation and definition<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

t<br />

Fig. 102<br />

t<br />

Fig. 103<br />

Chebychev polynomials T 0 ,...,T 4<br />

Chebychev polynomials T 5 ,...,T 9<br />

Mesh of nodes: T := {t 0 < t 1 < · · · < t n−1 < t n }, n ∈ N,<br />

function f : I → R continuous; without loss of generality I = [−1, 1].<br />

Thm. 8.4.1: ‖f − p‖ L ∞ (I) ≤ 1<br />

∥<br />

∥f (n+1)∥ ∥ ∥L<br />

(n + 1)!<br />

‖w‖ ∞ (I)<br />

L ∞ (I) ,<br />

w(t) := (t − t 0 ) · · · · · (t − t n ) .<br />

Ôº¼ º<br />

Zeros of T n :<br />

Extrema (alternating signs) of T n :<br />

( ) 2k − 1<br />

t k = cos<br />

2n π , k = 1, ...,n . (8.5.1)<br />

|T n (t k )| = 1 ⇔ ∃ k = 0,...,n: t k = cos kπ n , ‖T n‖ L ∞ ([−1,1]) = 1 .<br />

Chebychev nodes t k from (8.5.1):<br />

Ôº¾ º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!