21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proof.<br />

(2.1.3) → induction w.r.t. n: After 1st step of elimination:<br />

a (1)<br />

ij = a ij − a i1<br />

a 11<br />

a 1j , i,j = 2,...,n ⇒ a (1)<br />

ii > 0 .<br />

Goal: Estimate relative perturbations in F(x) due to relative perturbations in x.<br />

(cf. the same investigations for linear systems of equations in Sect. 2.5.5 and Thm. 2.5.9)<br />

|a (1)<br />

n ii | − ∑<br />

|a (1) ∣<br />

ij | = ∣∣aii<br />

− a i1<br />

j=2<br />

j≠i<br />

∣ ∣∣<br />

∑ n ∣<br />

a<br />

a 1i − ∣a ij − a ∣<br />

i1 ∣∣<br />

a<br />

11 a 1j<br />

11<br />

≥ a ii − |a i1||a 1i |<br />

−<br />

a 11<br />

≥ a ii − |a i1||a 1i |<br />

−<br />

a 11<br />

j=2<br />

j≠i<br />

n∑<br />

j=2<br />

j≠i<br />

n∑<br />

j=2<br />

j≠i<br />

|a ij | − |a i1|<br />

a 11<br />

∑ n |a 1j |<br />

j=2<br />

j≠i<br />

|a ij | − |a i1 | a 11 − |a 1i |<br />

a 11<br />

≥ a ii −<br />

n∑<br />

|a ij | ≥ 0 .<br />

j=1<br />

j≠i<br />

We assume that K n is equipped with some vector norm (→ Def. 2.5.1) and we use the induced<br />

matrix norm (→ Def. 2.5.2) on K n,n .<br />

Ax = y ⇒<br />

∥<br />

‖x‖ ≤ ∥A −1∥ ∥ ‖y‖<br />

A(x + ∆x) = y + ∆y ⇒ A∆x = ∆y ⇒ ‖∆y‖ ≤ ‖A‖ ‖∆x‖<br />

⇒<br />

‖∆y‖<br />

‖y‖ ≤ ‖A‖ ‖∆x‖<br />

∥<br />

∥A −1∥ ∥ −1 ‖x‖ = cond(A)‖∆x‖ ‖x‖ . (2.8.1)<br />

relative perturbation in result<br />

relative perturbation in data<br />

A regular, diagonally dominant ⇒ partial pivoting according to (2.3.4) selects i-th row in i-th step.<br />

➣<br />

Condition number cond(A) (→ Def. 2.5.11) bounds amplification of relative error in argument<br />

vector in matrix×vector-multiplication x ↦→ Ax.<br />

△<br />

Remark 2.7.4 (Telling MATLAB about matrix properties).<br />

MATLAB-\ assumes generic matrix, cannot detect special properties of (fully populated) matrix (e.g.<br />

Ôº½ ¾º<br />

Example 2.8.2 (Conditioning of row transformations).<br />

Ôº½½ ¾º<br />

symmetrc, s.p.d., triangular).<br />

Condition numbers of row transformation matrices<br />

10 7 µ<br />

10 6<br />

➤ Use y = linsolve(A,b,opts)<br />

opts ∈ { LT ↔ A lower triangular matrix<br />

UT ↔ A upper triangular matrix<br />

UHESS ↔ A upper Hessenberg matrix<br />

SYM ↔ A Hermitian matrix<br />

POSDEF ↔ A positive definite matrix }<br />

△<br />

2 × 2 Row transformation matrix (cf. elimination<br />

matrices of Gaussian elimination, Sect. 2.2):<br />

( )<br />

1 0<br />

T(µ) =<br />

µ 1<br />

Condition numbers of T(µ)<br />

✄<br />

condition number<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

2−norm<br />

maximum norm<br />

1−norm<br />

10 −4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4<br />

Fig. 20<br />

2.8 QR-Factorization/QR-decomposition<br />

Remark 2.8.1 (Sensitivity of linear mappings).<br />

{<br />

K<br />

Consider problem map (→ Sect. 2.5.2) F :<br />

n ↦→ K n<br />

x ↦→ Ax<br />

Code 2.8.3: computing condition numbers of row transoformation matrices<br />

1 T = eye ( 2 ) ; res = [ ] ;<br />

2 for mult = 2.^( −10:10)<br />

3 T ( 1 , 2 ) = mult ;<br />

4 res = [ res ; mult , cond ( T , 2 ) , cond ( T , ’ i n f ’ ) , cond ( T , 1 ) ] ;<br />

5 end<br />

6 figure ;<br />

7 loglog ( res ( : , 1 ) , res ( : , 2 ) , ’ r + ’ , res ( : , 1 ) , res ( : , 3 ) , ’m∗ ’ ,<br />

res ( : , 1 ) , res ( : , 4 ) , ’ b^ ’ ) ;<br />

Ôº½¼ ¾º<br />

Ôº½¾ ¾º<br />

for given regular A ∈ K n,n ➣ x ˆ= “data” 8 xlabel ( ’ { \ b f \mu} ’ , ’ f o n t s i z e ’ ,14) ;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!