21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

20<br />

18<br />

Remark 8.5.2 (Chebychev polynomials on arbitrary interval).<br />

16<br />

14<br />

n<br />

12<br />

10<br />

How to use Chebychev polynomial interpolation on an arbitrary interval?<br />

8<br />

6<br />

Scaling argument:<br />

interval transformation requires the transport of the functions<br />

4<br />

2<br />

t<br />

[−1, 1]<br />

̂t ↦→ t := a + 1 2 (̂t + 1)(b − a)<br />

−−−−−−−−−−−−−−−−−−−−−→ [a,b] ↔ ̂f(̂t) := f(t) .<br />

Remark 8.5.1 (3-term recursion for Chebychev polynomial).<br />

p ∈ P n ∧ p(t j ) = f(t j ) ⇔ ̂p ∈ P n ∧ ̂p(̂t j ) = ̂f(̂t j ) .<br />

3-term recursion by cos(n + 1)x = 2 cos nx cosx − cos(n − 1)x with cos x = t:<br />

T n+1 (t) = 2tT n (t) − T n−1 (t) , T 0 ≡ 1 , T 1 (t) = t , n ∈ N . (8.5.2)<br />

This implies: • T n ∈ P n ,<br />

• leading coefficients equal to 2 n−1 ,<br />

• T n linearly independent,<br />

• T n basis of P n = Span {T 0 ,...,T n }, n ∈ N 0 .<br />

△<br />

Ôº¿ º<br />

dn ̂f<br />

With transformation formula for the integrals &<br />

d̂t n (̂t) = ( 1 2 |I|)n dn f<br />

dt n (t):<br />

∥<br />

∥ ∥∥<br />

‖f − I T (f)‖ L ∞ (I) = ̂f − ÎT<br />

( ̂f)<br />

∥ ≤ 2−n<br />

dn+1 ̂f ∥∥∥∥L L ∞ ([−1,1]) (n + 1)! ∥ d̂t n+1 ∞ ([−1,1])<br />

≤ 2−2n−1<br />

(n + 1)! |I|n+1 ∥ ∥ ∥f<br />

(n+1) ∥ ∥ ∥L ∞ (I) . (8.5.4)<br />

Ôº º<br />

✬<br />

✩<br />

Theorem 8.5.2 (Minimax property of the Chebychev polynomials).<br />

✫<br />

‖T n ‖ L ∞ ([−1,1]) = inf{‖p‖ L ∞ ([−1,1]) : p ∈ P n,p(t) = 2 n−1 t n + · · · } , ∀n ∈ N .<br />

Proof. See [13, Section 7.1.4.] ✷<br />

Application to approximation by polynomial interpolation:<br />

{ ( ) }<br />

For I = [−1, 1] • “optimal” interpolation nodes T = cos 2k+1<br />

2(n+1) π , k = 0, ...,n ,<br />

• w(t) = (t − t 0 ) · · · (t − t n+1 ) = 2 −n T n+1 (t) , ‖w‖ L ∞ (I) = 2−n ,<br />

✪<br />

a<br />

b<br />

✬<br />

The Chebychev nodes in the interval I =<br />

[a,b] are<br />

(<br />

t k := a + 1 2 (b − a) cos ( )<br />

2k + 1<br />

2(n + 1) π) + 1 ,<br />

✫<br />

k = 0,...,n .<br />

(8.5.5)<br />

✩<br />

✪<br />

△<br />

with leading coefficient 1.<br />

8.5.2 Chebychev interpolation error estimates<br />

Then, by Thm. 8.4.1,<br />

‖f − I T (f)‖ L ∞ ([−1,1]) ≤<br />

2−n<br />

∥<br />

∥f (n+1)∥ ∥ ∥L<br />

(n + 1)!<br />

. ∞ ([−1,1]) (8.5.3)<br />

Ôº º<br />

Example 8.5.3 (Polynomial interpolation: Chebychev nodes versus equidistant nodes).<br />

Runge’s function f(t) = 1<br />

1+t2, see Ex. 8.4.3, polynomial interpolation based on uniformly spaced<br />

nodes and Chebychev nodes:<br />

Ôº º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!