21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Heuristics:<br />

A quadrature formula has order m ∈ N already, if it is exact for m polynomials<br />

∈ P m−1 that form a basis of P m−1 (recall Thm. 8.1.1).<br />

⇕<br />

An n-point quadrature formula has 2n “degrees of freedom” (n node positions, n<br />

weights).<br />

Optimist’s assumption: ∃ family of n-point quadrature formulas<br />

n∑<br />

∫ 1<br />

Q n (f) := ωj n f(ξn j ) ≈ f(t) dt , n ∈ N ,<br />

j=1<br />

−1<br />

of order 2n ⇔ exact for polynomials ∈ P 2n−1 . (10.4.3)<br />

“No. of equations = No. of unknowns”<br />

Define ¯Pn (t) := (t − ξ n 1 ) · · · · · (t − ξn n) , t ∈ R ⇒ ¯P n ∈ P n .<br />

Note: ¯P n has leading coefficient = 1.<br />

Example 10.4.1 (2-point quadrature rule of order 4).<br />

By assumption on the order of Q n :<br />

for any q ∈ P n−1<br />

Necessary & sufficient conditions for order 4 , cf. (10.3.7):<br />

∫ b<br />

Q n (p) = p(t) dt ∀p ∈ P 3 ⇔ Q n (t q ) = 1<br />

a<br />

q + 1 (bq+1 − a q+1 ) , q = 0, 1, 2, 3 .<br />

∫ 1<br />

n∑<br />

q(t) ¯P n (t) dt (10.4.3)<br />

= ω<br />

−1 } {{ }<br />

j n q(ξn j ) ¯P n (ξj n ) = 0 .<br />

} {{ }<br />

∈P 2n−1 j=1 =0<br />

∫1<br />

⇒ orthogonality q(t) ¯P n (t) dt = 0 ∀q ∈ P n−1 . (10.4.4)<br />

−1<br />

Ôº¿ ½¼º<br />

Recall:<br />

L 2 (] − 1, 1[)-inner product of q and ¯P n<br />

∫b<br />

(f, g) ↦→ f(t)g(t) dt is an inner product on C 0 ([a,b])<br />

a<br />

Ôº ½¼º<br />

4 equations for weights ω j and nodes ξ j , j = 1, 2 (a = −1,b = 1), cf. Rem. 10.3.11<br />

∫ 1<br />

∫ 1<br />

1 dt = 2 = 1ω 1 + 1ω 2 , t dt = 0 = ξ 1 ω 1 + ξ 2 ω 2<br />

−1<br />

−1<br />

∫ 1<br />

t 2 dt = 2 ∫ 1<br />

−1 3 = ξ2 1 ω 1 + ξ2 2 ω 2 , t 3 dt = 0 = ξ1 3 ω 1 + ξ2 3 ω 2 .<br />

−1<br />

Solve using MAPLE:<br />

(10.4.1)<br />

> eqns := seq(int(x^k, x=-1..1) = w[1]*xi[1]^k+w[2]*xi[2]^k,k=0..3);<br />

> sols := solve(eqns, indets(eqns, name)):<br />

> convert(sols, radical);<br />

➣<br />

Abstract techniques for vector spaces with inner product can be applied to polynomials, for<br />

instance Gram-Schmidt orthogonalization, cf. (4.2.6) (→ linear algebra).<br />

Abstract Gram-Schmidt orthogonalization: in a vector space with inner product · orthogonal vectors<br />

q 0 , q 1 , ... spanning the same subspaces as the linearly independent vectors v 0 , v 1 , ... are constructed<br />

recursively via<br />

q n+1 := v n+1 −<br />

n∑<br />

k=0<br />

v n+1 · q k<br />

q k · q k<br />

q k , q 0 := v 0 .<br />

➣ Construction of ¯P n by Gram-Schmidt orthogonalization of monomial basis {1, t,t 2 , ...,t n−1 }<br />

of P n−1 w.r.t. L 2 (] − 1, 1[)-inner product:<br />

➣ weights & nodes:<br />

{<br />

ω 2 = 1,ω 1 = 1,ξ 1 = 1/3 √ 3,ξ 2 = −1/3 √ }<br />

3<br />

¯P 0 (t) := 1 ,<br />

¯Pn+1 (t) = t n −<br />

n∑<br />

k=0<br />

∫ 1−1<br />

t n ¯P k (t)dt<br />

∫ 1−1 ¯P 2<br />

k (t)dt · ¯P k (t) (10.4.5)<br />

The considerations so far only reveal constraints on the nodes of an n-point quadrature rule of order<br />

2n.<br />

quadrature formula:<br />

∫ 1<br />

−1<br />

( ) 1<br />

f(x) dx ≈ f √3 + f<br />

(−√ 1 )<br />

3<br />

(10.4.2)<br />

Ôº ½¼º<br />

✸<br />

They do by no means confirm the existence of such rules, but offer a clear hint on how to construct<br />

them:<br />

Ôº ½¼º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!