21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5<br />

2.5<br />

2<br />

1.5<br />

Phase flow for Zeeman model (α = 5.000000e−01,β=1.000000e−01)<br />

3<br />

2<br />

Heartbeat according to Zeeman model (α = 5.000000e−01,β=1.000000e−01)<br />

l(t)<br />

p(t)<br />

Riccati differential equation<br />

1.5<br />

ẏ = y 2 + t 2<br />

➤<br />

scalar ODE<br />

d = 1, I, D = R + . (11.1.6)<br />

1.5<br />

1<br />

1<br />

0.5<br />

p<br />

0<br />

l/p<br />

0<br />

−0.5<br />

1<br />

1<br />

−1<br />

−1<br />

y<br />

y<br />

−1.5<br />

−2<br />

−2<br />

0.5<br />

0.5<br />

−2.5<br />

l<br />

Fig. 128<br />

−3<br />

0 10 20 30 40 50 60 70 80 90 100<br />

time t<br />

Fig. 129<br />

Observation: α ≪ 1 ➤ atrial fibrillation<br />

0<br />

0 0.5 1 1.5<br />

t<br />

Fig. 130<br />

0<br />

0 0.5 1 1.5<br />

t<br />

Fig. 131<br />

tangent field<br />

solution curves<br />

✸<br />

solution curves run tangentially to the tangent field in each point of the extended state space.<br />

Abstract mathematical description:<br />

Ôº¾ ½½º½<br />

Ôº¿½ ½½º½ ✸<br />

✬<br />

Initial value problem (IVP) for first-order ordinary differential equation (ODE): (→ [40,<br />

Sect. 5.6])<br />

ẏ = f(t,y) , y(t 0 ) = y 0 . (11.1.5)<br />

f : I × D ↦→ R d ˆ= right hand side (r.h.s.) (d ∈ N), given in procedural form<br />

✩<br />

Terminology: f = f(y), r.h.s. does not depend on time ➙ ẏ = f(y) is autonomous ODE<br />

For autonomous ODEs:<br />

I = R and r.h.s. y ↦→ f(y) can be regarded as stationary vector<br />

field (velocity field)<br />

if t ↦→ y(t) is solution ⇒ for any τ ∈ R t ↦→ y(t + τ) is solution,<br />

too.<br />

initial time irrelevant: canonical choice t 0 = 0<br />

function v = f(t,y).<br />

I ⊂ R ˆ= (time)interval ↔ “time variable” t<br />

D ⊂ R d ˆ= state space/phase space ↔ “state variable” y (ger.: Zustandsraum)<br />

Ω := I × D ˆ= extended state space (of tupels (t,y))<br />

Note: autonomous ODEs naturally arise when modelling time-invariant systems/phenomena. All<br />

examples above led to autonomous ODEs.<br />

Remark 11.1.5 (Conversion into autonomous ODE).<br />

✫<br />

t 0 ˆ= initial time, y 0 ˆ= initial state ➣ initial conditions<br />

✪<br />

Idea:<br />

include time as an extra d + 1-st component of an extended state vector.<br />

For d > 1 ẏ = f(t,y) can be viewed as a system of ordinary differential equations:<br />

⎛<br />

ẏ = f(y) ⇐⇒ ⎝ y ⎞ ⎛<br />

1<br />

. ⎠ = ⎝ f ⎞<br />

1(t,y 1 ,...,y d )<br />

. ⎠ .<br />

y d f d (t,y 1 , ...,y d )<br />

Example 11.1.4 (Tangent field and solution curves).<br />

Ôº¿¼ ½½º½<br />

This solution component has to grow linearly ⇔ temporal derivative = 1<br />

( ) ( )<br />

(<br />

y(t) z ′<br />

f(zd+1 ,z<br />

z(t) := = : ẏ = f(t,y) ↔ ż = g(z) , g(z) :=<br />

′ )<br />

)<br />

.<br />

t z d+1 1<br />

Ôº¿¾ ½½º½

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!