21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

∃ (partial) cyclic row permutation m + 1 ← k, i ← i + 1, i = k,...,m:<br />

→ unitary permutation matrix (→ Def. 2.3.1) P ∈ {0, 1} m+1,m+1<br />

( ) ( A Q<br />

PÃ = H ( )<br />

0 R<br />

)PÃ v T 0 1<br />

= v T<br />

Fall m = n<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

v T R<br />

⎞<br />

⎟<br />

⎠ .<br />

3<br />

Example 3.0.1 (Non-linear electric circuit).<br />

Iterative <strong>Methods</strong> for Non-Linear<br />

Systems of Equations<br />

2 Transform into upper triangular form by m − 1 successive Givens rotations:<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

∗ · · · · · · ∗<br />

∗ · · · · · · ∗<br />

0 ∗ .<br />

0 ∗ .<br />

. 0 . ..<br />

G 1,m<br />

⎜ . . ∗ .<br />

−−−→<br />

. 0 ...<br />

G 2,m<br />

⎟ ⎜ . . ∗ .<br />

−−−→ · · ·<br />

⎟<br />

⎝ 0 0 0 ∗ ∗ ⎠ ⎝ 0 0 0 ∗ ∗ ⎠<br />

∗ · · · · · · ∗ ∗ ∗ 0 ∗ · · · ∗ ∗ ∗<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

∗ · · · · · · ∗<br />

∗ · · · · · · ∗<br />

0 ∗ .<br />

0 ∗ .<br />

G m−2,m<br />

· · · −−−−−→<br />

. 0 . ..<br />

G m−1,m<br />

⎜ . . ∗ .<br />

−−−−−→<br />

. 0 ...<br />

⎟ ⎜ . . ∗ .<br />

:= ˜R (2.9.12)<br />

⎟<br />

⎝ 0 0 0 ∗ ∗ ⎠ ⎝ 0 0 0 ∗ ∗ ⎠<br />

0 · · · 0 ∗ ∗<br />

0 · · · 0 ∗<br />

Ôº¾¿¿ ¾º<br />

Schmitt trigger circuit<br />

NPN bipolar junction transistor:<br />

collector<br />

base<br />

emitter<br />

✄<br />

R b<br />

U in<br />

➄<br />

➀<br />

U +<br />

R 3 R 4<br />

R 1<br />

➃<br />

➂<br />

➁<br />

U out<br />

R e R 2<br />

Fig. 27<br />

Ôº¾¿ ¿º¼<br />

3 With Q 1 = G m−1,m · · · · · G 1,m<br />

( )<br />

à = P T Q 0<br />

Q<br />

0 1<br />

H 1 ˜R = ˜Q˜R with unitary ˜Q ∈ K m+1,m+1 .<br />

☞<br />

matrix.<br />

Similar update algorithms exist for modifications arising from dropping one row or column of a<br />

Ebers-Moll model (large signal approximation):<br />

) ( )<br />

U BE U BC<br />

I C = I S<br />

(e<br />

U T − e<br />

U T − I U BC<br />

S<br />

e<br />

U T − 1 = I<br />

β C (U BE , U BC ) ,<br />

R<br />

I B = I (<br />

U<br />

) ( )<br />

BE<br />

S<br />

e<br />

U T − 1 + I U BC<br />

S<br />

e<br />

U T − 1 = I B (U BE , U<br />

β F β BC ) ,<br />

R<br />

)<br />

U BE U BC<br />

I E = I S<br />

(e<br />

U T − e<br />

U T + I (<br />

S<br />

β F<br />

)<br />

U T − 1 = I E (U BE ,U BC ) .<br />

U BE<br />

e<br />

I C , I B , I E : current in collector/base/emitter,<br />

U BE , U BC : potential drop between base-emitter, base-collector.<br />

(3.0.1)<br />

(β F is the forward common emitter current gain (20 to 500), β R is the reverse common emitter current<br />

gain (0 to 20), I S is the reverse saturation current (on the order of 10 −15 to 10 −12 amperes), U T is<br />

the thermal voltage (approximately 26 mV at 300 K).)<br />

Ôº¾¿ ¾º<br />

Ôº¾¿ ¿º¼

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!