21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Notice: rank(A) = n ⇒ A H A ∈ R n,n s.p.d. (→ Def. 2.7.1)<br />

A way to avoid the computation of A H A:<br />

Remark 6.1.1 (Conditioning of normal equations).<br />

!<br />

Caution: danger of instability, with SVD A = UΣV H<br />

cond 2 (A H A) = cond 2 (VΣ H U H UΣV H ) = cond 2 (Σ H Σ) = σ2 1<br />

σn<br />

2 = cond 2 (A) 2 .<br />

➣ For fairly ill-conditioned A using the normal equations (6.1.2) to solve the linear least squares<br />

problem (6.1.1) numerically may run the risk of huge amplification of roundoff errors incurred<br />

during the computation of the right hand side A H b: potential instability (→ Def. 2.5.5) of normal<br />

equation approach.<br />

△<br />

Expand normal equations (6.1.2): introduce residual r := Ax − b as new unknown:<br />

( ( )( ) (<br />

A H Ax = A H r −I A r b<br />

b ⇔ B :=<br />

x)<br />

A H = . (6.1.3)<br />

0 x 0)<br />

More general substitution r := α −1 (Ax − b), α > 0 to improve the condition:<br />

( ) ( ) ( ) (<br />

A H Ax = A H r −αI A r b<br />

b ⇔ B α :=<br />

x A H = . (6.1.4)<br />

0 x 0)<br />

For m, n ≫ 1, A sparse, both (6.1.3) and (6.1.4) lead to large sparse linear systems of equations,<br />

amenable to sparse direct elimination techniques, see Sect. 2.6.3<br />

Example 6.1.2 (Instability of normal equations).<br />

Ôº¼ º½<br />

Ôº½½ º½<br />

!<br />

If δ < √ eps ⇒<br />

Caution: loss of information in the computation<br />

of A H A, e.g.<br />

⎛<br />

A = ⎝ 1 1<br />

⎞<br />

( )<br />

δ 0⎠ ⇒ A H 1 + δ 2 1<br />

A =<br />

0 δ<br />

1 1 + δ 2<br />

Sect. 2.4, in particular Rem. 2.4.9.<br />

1 >> A = [1 1 ; . . .<br />

2 sqrt ( eps ) 0 ; . . .<br />

3 0 sqrt ( eps ) ] ;<br />

4 >> rank (A)<br />

5 ans = 2<br />

6 >> rank (A’∗A)<br />

7 ans = 1<br />

1 + δ 2 = 1 in M, i.e. A H A “numeric singular”, though rank(A) = 2, see<br />

✸<br />

Example 6.1.3 (Condition of the extended system).<br />

Consider (6.1.3), (6.1.4) for<br />

⎛<br />

A = ⎝ 1 + ǫ 1<br />

⎞<br />

1 − ǫ 1 ⎠ .<br />

ǫ ǫ<br />

Plot of different condition numbers<br />

in dependence on ǫ<br />

✄<br />

(α = ‖A‖ 2 / √ 2)<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

✸<br />

10 0<br />

−5 10<br />

cond 2<br />

(A)<br />

cond 2<br />

(A H A)<br />

cond 2<br />

(B)<br />

cond 2<br />

(B α<br />

)<br />

10 −4 10 −3 10 −2 10 −1 10 0<br />

10 10 ε<br />

Another reason not to compute A H A, when both m, n large:<br />

A sparse ⇏ A T A sparse<br />

Potential memory overflow, when computing A T A<br />

Squanders possibility to use efficient sparse direct elimination techniques, see Sect. 2.6.3<br />

Ôº½¼ º½<br />

6.2 Orthogonal Transformation <strong>Methods</strong><br />

Ôº½¾ º¾

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!