21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Convergence analysis for explicit Euler method (11.2.1) for autonomous IVP (11.1.5) with sufficiently<br />

smooth and (globally) Lipschitz continuous f, that is,<br />

∃L > 0: ‖f(t,y) − f(t,z)‖ ≤ L ‖y − z‖ ∀y,z ∈ D . (11.3.1)<br />

Recall: recursion for explicit Euler method<br />

y k+1 = y k + h k f(y k ) , k = 1, ...,N − 1 . (11.2.1)<br />

y<br />

y k+1<br />

τ(h,y k )<br />

y k y(t)<br />

t<br />

one-step error:<br />

τ(h,y) := Ψ h y − Φ h y . (11.3.4)<br />

✁ geometric visualisation of one-step error for<br />

explicit Euler method (11.2.1), cf. Fig. 133.<br />

t k t k+1<br />

Fig. 139<br />

D<br />

y(t)<br />

y k+2<br />

k−1<br />

y k+1 Ψ<br />

Ψ<br />

y k<br />

Ψ<br />

y<br />

t<br />

t k−1 t k t k+1 t k+2<br />

Error sequence: e k := y k − y(t k ) .<br />

✁ — ˆ= t ↦→ y(t)<br />

— ˆ= Euler polygon,<br />

• ˆ= y(t k ),<br />

• ˆ= y k ,<br />

−→ ˆ= discrete evolution Ψ t k+1−t k<br />

Ôº¿ ½½º¿<br />

✎ notation: t ↦→ y(t) ˆ= (unique) solution of IVP, cf. Thm. 11.1.4.<br />

➁ Estimate for one-step error:<br />

Geometric considerations: distance of a smooth curve and its tangent shrinks as the square of the<br />

distance to the intersection point (curve locally looks like a parabola in the ξ − η coordinate system,<br />

see Fig. 141).<br />

Ôº ½½º¿<br />

➀ Abstract splitting of error:<br />

Here and in what follows we rely on the abstract concepts of the evolution operator Φ associated<br />

with the ODE ẏ = f(y) (→ Def. 11.1.6) and discrete evolution operator Ψ defining the explicit Euler<br />

single step method, see Def. 11.2.1:<br />

(11.2.1) ⇒ Ψ h y = y + hf(y) . (11.3.2)<br />

We argue that in this context the abstraction pays off, because it helps elucidate a general technique<br />

for the convergence analysis of single step methods.<br />

y<br />

η<br />

y k+1<br />

τ(h,y k )<br />

ξ<br />

y k y(t)<br />

t<br />

t k t k+1<br />

Fig. 140<br />

η<br />

τ(h,y k )<br />

ξ<br />

Fig. 141<br />

Fundamental error splitting<br />

e k+1 =Ψ h ky k − Φ h ky(t k )<br />

= Ψ h ky k − Ψ h ky(t k )<br />

} {{ }<br />

propagated error<br />

+ Ψ h ky(t k ) − Φ h ky(t k ) .<br />

} {{ }<br />

one-step error<br />

(11.3.3)<br />

y k+1<br />

e k+1<br />

Ψ h k (y(t k)<br />

y k<br />

e k<br />

y(t k )<br />

k−1<br />

y(t k+1 )<br />

t k+1<br />

Fig. 138<br />

Ôº ½½º¿<br />

Analytic considerations: recall Taylor’s formula for function y ∈ C K+1<br />

K∑<br />

∫t+h<br />

y(t + h) − y(t) = y (j) (t) hj<br />

j! + f (K+1) (t + h − τ)K<br />

(τ) dτ , (11.3.5)<br />

K!<br />

j=0<br />

} t {{ }<br />

= f(K+1) (ξ)<br />

h K+1 K!<br />

for some ξ ∈ [t,t + h]<br />

Ôº ½½º¿

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!