21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

y<br />

y 1<br />

y(t)<br />

y 0<br />

t<br />

t 0 t 1 Fig. 133<br />

explicit Euler method (Euler 1768)<br />

✁ First step of explicit Euler method (d = 1):<br />

Slope of tangent = f(t 0 ,y 0 )<br />

y 1 serves as initial value for next step!<br />

(11.2.1) by approximating derivative<br />

dt d by forward difference quotient on a (temporal) mesh M :=<br />

{t 0 , t 1 ,...,t N }:<br />

ẏ = f(t,y) ←→<br />

y k+1 − y k<br />

h k<br />

= f(t k ,y h (t k )) , k = 0,...,N − 1 . (11.2.2)<br />

Difference schemes follow a simple policy for the discretization of differential equations: replace all<br />

derivatives by difference quotients connecting solution values on a set of discrete points (the mesh).<br />

Example 11.2.1 (Visualization of explicit Euler method).<br />

△<br />

Why forward difference quotient and not backward difference quotient?<br />

Let’s try!<br />

Ôº½ ½½º¾<br />

On (temporal) mesh M := {t 0 , t 1 ,...,t N } we obtain<br />

ẏ = f(t,y) ←→<br />

y k+1 − y k<br />

h k<br />

= f(t k+1 ,y h (t k+1 )) , k = 0,...,N − 1 . (11.2.3)<br />

Backward difference quotient<br />

Ôº¿ ½½º¾<br />

2.4<br />

2.2<br />

exact solution<br />

explicit Euler<br />

This leads to another simple timestepping scheme analoguous to (11.2.1):<br />

IVP for Riccati differential equation, see Ex. 11.1.4<br />

2<br />

1.8<br />

ẏ = y 2 + t 2 . (11.1.6)<br />

Here: y 0 = 1 2 , t 0 = 0, T = 1, ✄<br />

— ˆ= “Euler polygon” for uniform timestep h = 0.2<br />

↦→ ˆ= tangent field of Riccati ODE<br />

y<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

t<br />

Fig. 134<br />

✸<br />

y k+1 = y k + h k f(t k+1 ,y k+1 ) , k = 0,...,N − 1 , (11.2.4)<br />

with local timestep (stepsize) h k := t k+1 − t k .<br />

(11.2.4) = implicit Euler method<br />

Note: (11.2.4) requires solving of a (possibly non-linear) system of equations to obtain y k+1 !<br />

(➤ Terminology “implicit”)<br />

Formula:<br />

explicit Euler method generates a sequence (y k ) N k=0 by the recursion<br />

y k+1 = y k + h k f(t k ,y k ) , k = 0,...,N − 1 , (11.2.1)<br />

with local (size of) timestep (stepsize) h k := t k+1 − t k .<br />

Remark 11.2.2 (Explicit Euler method as difference scheme).<br />

Ôº¾ ½½º¾<br />

Remark 11.2.3 (Feasibility of implicit Euler timestepping).<br />

Consider autonomous ODE and assume continuously differentiable right hand side: f ∈<br />

C 1 (D, R d ).<br />

Ôº ½½º¾<br />

y k+1 = y k + h k f(t k+1 ,y k+1 ) ⇔ G(h,y k+1 ) = 0 with G(h,z) := z − hf(z) − y k .<br />

(11.2.4) ↔ h-dependent non-linear system of equations:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!