14.12.2019 Views

Fundamentos de Engenharia Aeronáutica - Volume único

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

280

como

q

2

= 1 2 ⋅ ρ ⋅ v , tem-se que:

K ⋅ ( W S)

( T W )

q = 2 (4.150d)

K ⋅ ( W S )

( T W )

1 2 ⋅

⋅ ρ ⋅ v

2 =

(4.150e)

2

v

2

2 ⋅ 2 ⋅ K

=

ρ ⋅

⋅ ( W S)

( T W )

(4.150f)

v R

⋅ ( W S )

( T W )

4 ⋅ K

min

=

(4.150g)

ρ ⋅

A Equação (4.150g) é utilizada como forma de se determinar a velocidade que

proporciona o raio de curvatura mínimo. O fator de carga correspondente a esta velocidade é

obtido com a substituição da Equação (4.150g) na Equação (4.147), assim tem-se que:

n

⋅ K ⋅ ( W S)

( T W ) ⋅ K

( T W )

( W S )

2 2

4

2

2

⋅ K ⋅ ( W S ) ⋅ C

D 0

( T W ) 2 ⋅ K ⋅ ( W S ) 2

= ⋅ −

(4.151)

n

⋅ K ⋅ C

= 2 −

(4.151a)

T W

2 D0

4( ) 2

n

R min

4 ⋅ K ⋅ C

= 2 −

(4.151b)

D0

( T W ) 2

A Equação (4.151b) é utilizada para a determinação do fator de carga correspondente

ao raio de curvatura mínimo.

A Equação que determina o raio de curvatura mínimo pode ser obtida pela substituição

das Equações (4.150g) e (4.151b) na Equação (4.130a) portanto:

R

min

=

g ⋅

4 ⋅ K

ρ

⋅ ( W S )

( T W )

2 − 4 ⋅ K ⋅ C

( T W )

2

D0

2

−1

(4.152)

R

min

=

g ⋅

4 ⋅ K

ρ

⋅ ( W S )

( T W )

2 − 4 ⋅ K ⋅ C

( T W )

2

D0

− 1

(4.152a)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!