25.11.2014 Aufrufe

Verifikation reaktiver Systeme - Universität Kaiserslautern

Verifikation reaktiver Systeme - Universität Kaiserslautern

Verifikation reaktiver Systeme - Universität Kaiserslautern

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

221<br />

– Compound types: Ifσ 1 ,...σ n are types, (σ 1 ,...,σ n )op is a type denoting the<br />

set resulting from the application of op to set sets σ 1 ,...,σ n . For example,<br />

prod is the type operator of arity 2 which denotes the cartesian product<br />

operation. (σ 1 ,σ 2 )prod is usually written as σ 1 × σ 2 .<br />

– Function types: Ifσ 1 and σ 2 are types, then σ 1 → σ 2 is the function type<br />

with domain σ 1 and range σ 2 . It denotes the set of total functions from the<br />

set denoted by its domain to the set denoted by its range. Syntactically,<br />

→ is simply a distinguished type operator. As it always denotes the same<br />

operation in any model of the HOL theory, it is singled out in the definition<br />

of HOL types.<br />

– Type variables: They stand for arbitrary sets in the universe.<br />

Terms The terms in the HOL logic are expressions that denote elements of the<br />

sets denoted by types. Thus, each term is associated with a unique type which<br />

will be expressed by t σ . (The type subscript may be omitted if it is clear from<br />

the context.) As the definition of types in HOL is relative to a particular type<br />

structure Ω, the formal definition of terms is relative to a given collection of<br />

typed constants over Ω. A signature over Ω is just a set Σ Ω of such constants.<br />

The set Terms ΣΩ of terms over Σ Ω is defined to be the smallest set closed under<br />

the formation rules:<br />

– Constants: Aconstantc σ over Ω is a pair (c, σ) wherec ∈ Names and<br />

σ ∈ T ypes ω . (Assume that an infinite set Names of names is given.)<br />

– Variables: Ifx ∈ Names and σ ∈ Types Ω then the variable var x σ is a term<br />

over Σ Ω .<br />

– Lambda-abstractions: The lambda-abstraction (which denotes a function)<br />

λx σ .t σ2 σ 1 → σ2 is a term if var x σ1 ∈ Terms ΣΩ and t σ2 ∈ Terms ΣΩ .<br />

– Function applications:Ift σ′ →σ ∈ Terms ΣΩ and t‘ σ‘ ∈ Terms ΣΩ then t σ′ →σt‘ σ ′ σ ∈<br />

Terms.Anapplicationtt‘ denotes the result of applying the function denoted<br />

by t to the value denoted by t ′ .<br />

Standard structures A standard type structure Ω contains the atomic types B<br />

of boolean values and I of individuals. Logical formulas are then identified with<br />

terms of type bool. In addition, for being standard a signature must contain<br />

various logical constants with interpretation given by a standard model M:<br />

– Implication: ⇒ B→B→B represents the implication. M(⇒, B → B → B): b ⇒ b‘<br />

is 0, if b = 1 and b‘ =0; otherwise b ⇒ b‘ is1.<br />

– Equality: = α→α→B denotes equality on the set denoted by α. The intended<br />

interpretation M(=,α → α → B) is as follows: x = X x ′ is 1 if and only if<br />

x = x ′ ; otherwise it is 0.<br />

– Choice function: ɛ(α → B) → α is a choice function. M(ɛ, (α → B) →<br />

α) ∈ Π X∈U (X → B) → X is the function assigning to each X ∈ U the<br />

choice function sending f ∈ (X → B) toch X (f) =ch(f 1 1)iff 1 2=0ch(X)<br />

otherwise.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!