06.03.2013 Views

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Problema Cauchy-Dirichlet pentru ecuat¸ii hiperbolice 263<br />

Definit¸ia 7.4.3 O funct¸ie U ∈ S se nume¸ste solut¸ie generalizatǎ a problemei<br />

(7.36-7.39) dacǎ U(0) = u0, U ′ (0) = u1 ¸si pentru (∀)T > 0, (∀)V ∈ ST<br />

verificǎ:<br />

<br />

− < u1, V (0) > L2 (Ω) −<br />

0<br />

T<br />

T<br />

+<br />

0<br />

< U ′ (t), V ′ (t) > L 2 (Ω) dt+<br />

< U(t), V (t) >A dt =<br />

T<br />

0<br />

< F(t), V (t) > L 2 (Ω) dt<br />

(7.41)<br />

Observat¸ia 7.4.2 O solut¸ie clasicǎ u(t, X) a problemei (7.36-7.39) <strong>de</strong>fine¸ste<br />

o solut¸ie generalizatǎ a acestei probleme.<br />

Teorema 7.4.3 Dacǎ funct¸ia U ∈ S este solut¸ie generalizatǎ a problemei<br />

(7.36-7.39) ¸si funct¸ia u : [0, +∞) × Ω → IR 1 <strong>de</strong>finitǎ <strong>prin</strong> u(t, X) = U(t, X)<br />

este <strong>de</strong> clasǎ C 2 pentru t > 0 ¸si X ∈ Ω, atunci funct¸ia u = u(t, X) este<br />

solut¸ie clasicǎ a problemei (7.36-7.39).<br />

Demonstrat¸ie: Egalitatea (7.37):<br />

u(t, X) = 0, (∀)t ≥ 0 ¸si (∀)x ∈ ∂Ω<br />

rezultǎ din apartenent¸a U(t) ∈ H 1 0 . Egalitatea (7.38): u(0, X) = u0(0), (∀)X ∈<br />

Ω rezultǎ din U(0) = u0.<br />

Egalitatea (7.39): ∂u<br />

∂t (0, X) = u1(X), (∀)X ∈ ∂Ω rezultǎ din U ′ (0) = u1.<br />

Rǎmâne doar sǎ arǎtǎm egalitatea (7.36) adicǎ:<br />

∂2u + A · u(t, X) = f(t, X).<br />

∂t2 Pentru a <strong>de</strong>duce aceastǎ egalitate pornim <strong>de</strong> la egalitatea (7.41) pe care o<br />

scriem sub forma:<br />

<br />

−<br />

0<br />

T<br />

<br />

Ω<br />

∂u<br />

∂t (t, X) · V ′ <br />

(t)(X)dX dt −<br />

<br />

Ω<br />

u1(X) · V (0)(X)dX+

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!