06.03.2013 Views

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

76 CAPITOLUL 3<br />

<br />

ln ε +<br />

ε +<br />

ε +<br />

<br />

d<br />

ε +<br />

dt<br />

t<br />

t0<br />

ε +<br />

ln<br />

t<br />

t0<br />

ε +<br />

A · X(t; t0, X 0 ) − X(t)<br />

t<br />

t0<br />

t<br />

t0<br />

t<br />

t0<br />

A · X(τ; t0, X 0 ) − X(τ)dτ<br />

A · X(τ; t0, X 0 ) − <br />

X(τ) dτ<br />

A · X(τ; t0, X 0 ) − X(τ)dτ<br />

≤ A ⇔<br />

≤ A ⇔<br />

A · X(τ; t0, X 0 ) − <br />

X(τ) dτ − ln(ε) ≤ A (t − t0) ⇔<br />

t<br />

t0<br />

A · X(τ; t0, X 0 ) − X(τ) dτ<br />

) ≤ A ·(t − t0) ⇔<br />

ε<br />

A · X(τ; t0, X 0 ) − X(τ) dτ ≤ ε · e A·(t−t0) , (∀)t ≥ t0, ε > 0.<br />

=⇒ X(t; t0, X 0 ) − X(t) < εe A(t−t0) , (∀)t ≥ t0, (∀)ε > 0<br />

Pentru t fixat ¸si ε → 0 rezultǎ<br />

X(t; t0, X 0 ) − X(t) = 0.<br />

Astfel am arǎtat cǎ pentru orice t ≥ t0 ¸si t ∈ I avem X(t) = X(t; t0, X 0 ).<br />

Rat¸ionǎm analog pentru t ≤ t0, t ∈ I ¸si obt¸inem X(t) = X(t; t0, X 0 ). Se<br />

obt¸ine în final egalitatea<br />

X(t) = X(t; t0, X 0 )<br />

pentru orice t ∈ I, care aratǎ cǎ solut¸ia X(t) coinci<strong>de</strong> cu solut¸ia X(t; t0, X 0 )<br />

gǎsitǎ în teorema <strong>de</strong> existent¸ǎ.<br />

Observat¸ia 3.1.4 Din teorema <strong>de</strong> existent¸ǎ ¸si cea <strong>de</strong> unicitate rezultǎ cǎ<br />

orice solut¸ie a sistemului (3.2) este <strong>de</strong>finitǎ pe IR 1 ¸si se obt¸ine cu formula<br />

X(t) = e (t−t0)·A · X 0 .<br />

Într-a<strong>de</strong>vǎr fie X(t) o solut¸ie oarecare a sistemului (3.2) <strong>de</strong>finitǎ pe un interval

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!