06.03.2013 Views

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

Capitolul 1 Ecuatii diferentiale de ordinul ˆıntâi rezolvabile prin ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

98 CAPITOLUL 4<br />

¸si <strong>de</strong>ci |x2(t) − x0| ≤ M|t − t0| ≤ Mh ≤ b, (∀)t ∈ Ih. Rezultǎ astfel cǎ<br />

(t, x2(t)) ∈ ∆ pentru orice t ∈ Ih.<br />

Etapa II (a implicat¸iei):<br />

Presupunem cǎ (t,xn(t)) ∈ ∆, (∀) t ∈ Ih ¸si arǎtǎm cǎ (t, xn+1(t)) ∈ ∆,<br />

(∀) t ∈ Ih.<br />

Pentru aceasta calculǎm xn+1(t) ¸si gǎsim<br />

xn+1(t) = x0 +<br />

t<br />

t0<br />

f(τ, xn(τ))dτ<br />

<strong>de</strong> un<strong>de</strong> |xn+1(t) − x0| ≤ M|t − t0| ≤ Mh ≤ b, (∀) t ∈ Ih. Rezultǎ<br />

(t, xn+1(t)) ∈ ∆ pentru orice t ∈ Ih.<br />

Astfel am arǎtat cǎ pentru (∀)n ≥ 1 ¸si (∀)t ∈ Ih avem (t, xn(t)) ∈ ∆.<br />

Trecem acum sǎ evaluǎm maximul modulului |xn+1(t) − xn(t)| pe Ih.<br />

Pentru aceasta, t¸inem seamǎ <strong>de</strong> egalitǎt¸ile:<br />

xn+1(t) = x0 +<br />

xn(t) = x0 +<br />

pe care le scǎ<strong>de</strong>m ¸si obt¸inem:<br />

t<br />

|xn+1(t) − xn(t)| ≤ |K<br />

De aici rezultǎ inegalitatea:<br />

din care <strong>de</strong>ducem:<br />

t0<br />

t<br />

t0<br />

f(τ, xn(τ))dτ<br />

f(τ, xn−1(τ))dτ<br />

t<br />

t0<br />

|xn(τ) − xn−1(τ)|dτ|<br />

max |xn+1(t) − xn(t)| ≤<br />

t∈Ih<br />

K<br />

K + 1 max |xn(τ) − xn−1(τ)|<br />

τ∈Ih<br />

max |xn+1(t) − xn(t)| ≤<br />

t∈Ih<br />

≤<br />

<br />

K<br />

K + 1<br />

<br />

K<br />

K + 1<br />

n<br />

n<br />

· max<br />

t∈Ih<br />

· M · h ≤<br />

|x1(t) − x0| ≤<br />

K<br />

K + 1<br />

n<br />

· b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!