13.12.2012 Aufrufe

DAGA 2010 - Deutsche Gesellschaft für Akustik eV

DAGA 2010 - Deutsche Gesellschaft für Akustik eV

DAGA 2010 - Deutsche Gesellschaft für Akustik eV

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Programm <strong>DAGA</strong> <strong>2010</strong> 81<br />

along a spatially developing flow profile. Thus the sound field changes<br />

gradually with the flow profile. Its modal decomposition along the extend<br />

of the duct on an assumed radial constant flow profile allow conclusions<br />

about the influence of the radial non constant flow profile on the spatial<br />

changes of the radial structure of the sound field.<br />

Di. 16:10 Grashof C 116 Modelle u. Methoden Aeroakustik I<br />

Accurate Coupling Information for Hybrid CAA-Methodologies Based<br />

on Compressible Flow Simulations.<br />

W. de Roeck und W. Desmet<br />

KU Leuven, Dept. Mechanical Engineering<br />

Hybrid CAA methodologies, based on domain decomposition, are commonly<br />

considered as the most appropriate technique for the numerical<br />

simulation of aerodynamically generated noise and their far-field propagation<br />

with a reasonable computational effort. A crucial step, largely<br />

determining the accuracy of the final acoustic results, is the coupling<br />

between the aerodynamic source region and the acoustic propagation<br />

region. It is known that the spatial and temporal truncation of the<br />

source domain simulation together with the interpolation from the ’fine’<br />

source domain mesh to the ’coarse’ acoustic grid strongly influence the<br />

aeroacoustic radiation. When using a compressible flow simulation, the<br />

acoustic fluctuations, which are inherently present in the source domain<br />

results, can introduce an additional source of errors in the aeroacoustic<br />

radiation predictions. In this case, an aerodynamic/acoustic splitting<br />

technique, which allows separating the aerodynamic and acoustic fluctuations<br />

from the source domain simulation, can largely improve the accuracy<br />

of the aeroacoustic prediction. This paper illustrates the benefits<br />

of using this aerodynamic/acoustic splitting technique for a number of<br />

commonly used CAA benchmark problems. It is shown that the final accuracy<br />

of hybrid CAA methodologies can be largely improved, with only<br />

a minimum of additional computational effort, by extracting accurate<br />

coupling information from the source domain results.<br />

Di. 16:35 Grashof C 116 Modelle u. Methoden Aeroakustik I<br />

Introducing Lined-wall Boundary Conditions in the DLR Timedomain<br />

CAA Solver PIANO<br />

A. Bassetti a , S. Guerin a und O. Kornow b<br />

a <strong>Deutsche</strong>s Zentrum <strong>für</strong> Luft- und Raumfahrt (DLR), Berlin; b <strong>Deutsche</strong>s<br />

Zentrum <strong>für</strong> Luft- und Raumfahrt (DLR), Braunschweig<br />

Understanding the physical mechanisms that occur in the aeroacoustics<br />

of lined surfaces is a key issue for the optimal design of passive sound<br />

absorbers (liners) in aircraft engines. The liners play an important role to<br />

reduce the noise emitted by modern transport-aircraft engines. Engine<br />

and engine-nacelle manufacturers base their designs on gathered past<br />

experience and, more recently, on computational aeroacoustics (CAA)<br />

solutions, including impedance-type boundary conditions to simulate the

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!