23.04.2013 Views

Small Decentralized Hydropower Program National ... - Cd3wd.com

Small Decentralized Hydropower Program National ... - Cd3wd.com

Small Decentralized Hydropower Program National ... - Cd3wd.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A medida que aumenta la velocidad especifica, 10s<br />

valores ctiticos de o T aumentan espectacularmente.<br />

Para minimizar 10s problemas de la cavitation, la<br />

planta o T ha de exceder la (3 T criitica denotada en<br />

el cuadro. Esto puede tener repercusiones impor-<br />

tantes para la instalacion de la turbina y la cantidad<br />

de excavation que habra que efectuar. Esto puede<br />

verse facilmente refiriendose a la figura 14. Se puede<br />

formular una ecuaeion de energia entre la salida de<br />

la turbina y el agua de descarga<br />

(51)<br />

Pl V12 Pam vc2<br />

y +ZB+29=v+-<br />

29<br />

+ HL<br />

donde HL son las perdidas de la caida entre la en-<br />

trada y la descarga de la galaetia de suction. Esto<br />

puede reformularse de la siguiente manera:<br />

(52)<br />

Pl V12 pv<br />

y + z-7 =<br />

Patm Pv Vc2<br />

-+<br />

Y + 29<br />

{Dv =<br />

HL-ZB<br />

donde pv es la presion de1 vapor. El valor ctitico de<br />

HD, ocurre cuando P1 = Pvo HJ-J~ = V12/2g o cuan-<br />

do toda la caid;a disponible en el lado de la suction<br />

est6 presente en forma de &da de velocidad. HD, es<br />

aproximadamente<br />

(53)<br />

Patm pv<br />

--ZB<br />

HDv Y--<br />

Y<br />

asi, pues, el reglaje maxim0 de la turbina por encima<br />

de1 agua de descarga es<br />

Patm Pv<br />

(54) ZBmax = y-y - *Tc H<br />

donde 0~~ se obtiene a partir de la figura 15. ~~~~<br />

puede ser un valor negativo, lo que significa que la<br />

turbina ha de instalarse por debajo de la elevation<br />

de1 agua de descarga.<br />

A titulo de ejemplo, consideren una maquina de 500<br />

kW que opera a 500 rpm bajo una &da de 10<br />

metros. La velocidad especifica es de 3,8. Esta ser&<br />

una turbina de flujo axial que tiene unit UT critica de<br />

0,9 aproximadamente. Al nivel de1 mar, el reglaje<br />

maxim0 de la turbina setia<br />

ZBm<br />

= 10 - 0.09 - (0.9 x 10) = 1 meter<br />

Si se instalara la misma turbina en el lugar de esta<br />

conferencia (Quito, Ecuador, elevacidn m 3000 m), el<br />

The specific speed is 3.8. This will be an axial<br />

flow turbine having a critical or of about 0.9. At<br />

sea level, the maximum turbine setting would be<br />

ZBm<br />

= 10 - 0.09 - (0.9 x 10) = 1 meter<br />

If the same turbine was installed at the site of<br />

this conference (Quito, Ecuador, elevation m<br />

3000 mj, the maximum turbine setting would be<br />

zB = 6.7 - 0.09 - (0.9 x 10) = -2.3 meters<br />

Considerable excavation would be necessary.<br />

Thus, cavitation can be an important considera-<br />

tion.<br />

Speed Regulation<br />

The speed regulation of a turbine is an impor-<br />

tant and <strong>com</strong>plicated problem. The magnitude of<br />

the problem varies with size, type of machine and<br />

installation, type of electrical load, and whether<br />

or not the plant is tied into an electrical grid. It<br />

should also be kept in mind that runaway or no-<br />

load speed can be higher than the design speed<br />

by factors as high as 2.5. This is an important<br />

design consideration for all rotating parts, in-<br />

cluding the generator.<br />

It is beyond the scope of this paper to discuss<br />

the question of speed regulation in detail.<br />

However, some mention of this should be made<br />

since much of the technology is derived from<br />

large units. The cost of standard governors is<br />

thus disproportionately high in the smaller sizes.<br />

Regulation of speed is normally ac<strong>com</strong>plished<br />

through flow control. Adequate control requires<br />

sufficient rotational inertia of the rotating parts.<br />

When load is rejected, power is absorbed, ac-<br />

celerating the flywheel and, when load is applied,<br />

some additional power is available from deac-<br />

celeration of the flywheel. Response time of the<br />

governor must be carefully selected since rapid<br />

closing time can lead to excessive pressures in<br />

the penstock.<br />

A Francis turbine is controlled by opening and<br />

closing the guide vanes which vary the flow of<br />

water according to the load. A powerful governor<br />

is required to over<strong>com</strong>e the hydraulic and fric-<br />

tional forces and to maintain the guide vanes in<br />

fixed position under steady load. On the other<br />

hand, impulse turbines are more easily controll-<br />

ed. This is due to the fact that the jet can be<br />

deflected or an auxiliary jet can bypass flow from<br />

the power producing jet without changing the<br />

flow rate in the penstock. This permits long delay<br />

142

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!