23.04.2013 Views

Small Decentralized Hydropower Program National ... - Cd3wd.com

Small Decentralized Hydropower Program National ... - Cd3wd.com

Small Decentralized Hydropower Program National ... - Cd3wd.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

damente por la siguiente formula:<br />

H, = 0.72 VT (1)<br />

donde V es la velocidad de entrada de1 can0 (metros<br />

por Segundo), D es la altura de la <strong>com</strong>puerta<br />

(metros). La sumersidn H, (metros) se mide desde la<br />

superficie de1 agua hasta la corona de1 Cairo.<br />

Las caiierias de presidn se construyen nor-<br />

malmente de acero, pero para facilidades pequenas se<br />

pueden considerar varillas de madera, fibras de<br />

vidrio o caCos de pohvinil-cloruro. El espesor de las<br />

paredes y el diametro de las canen’as de presion<br />

pueden hacerse optimos teoricamente si se considera<br />

el costo de1 material y el costo de la energia perdida<br />

por la resistencia al fhujo. En realidad, si se quiere<br />

ahorrar en la manufactura por lo general se resulta<br />

en una medida uniforme e igual densidad de las<br />

paredes para una facilidad pequena. Se deben<br />

suministrar bloques de soporte en todos 10s lugares<br />

en que las caiierias de presion cambien de ilireccion<br />

fuere lateral o verticalmente, para contrarrestar la<br />

presion desigual y las fuerzas de cambio de1 impulso<br />

(normalmente las fuerzas debidas a la presidn son<br />

mayores). Las carietias de presion se deben disenar<br />

corn0 para resistir las presiones estiticas totales m&s<br />

las presiones transitorias que se deban a cambios<br />

subitos de la carga. Las presiones transitorias max-<br />

imas en aumento o disminucion han de resuitar por<br />

causa de subito cierre o apertura respectivamente de<br />

las <strong>com</strong>puertas de mariposa de la turbina o de las<br />

valvulas de control. En la practica las velocidades<br />

maximas en las carierias de presion son de 2.5 a 3.5<br />

metros por segundo. La presion maxima de cambio<br />

se da aproximadamente por la siguiente fomula:<br />

AP = PAV, (2)<br />

donde P es la densidad de1 agua, AV es el cambio en<br />

velocidad producido en la caneria de presion, y c es<br />

la velocidad de1 sonido en la caneria de presion (nor-<br />

malmente 120011500 metros por Segundo). AP sera<br />

el sign0 algebraic0 asociado con AV. Para las<br />

canen’as de presidn m&s largas y m&s grandes, setia<br />

an tieconomico utilizar paredes de espesor suficiente-<br />

mente grande <strong>com</strong>a para soportar dicha suba de la<br />

presion. Un tanque de pulsation, colocado tan cerca a<br />

la turbina <strong>com</strong>a sea posible, ha de suministrar<br />

liberacidn de la presibn de manera economica, si la<br />

pared de1 canon es suficientemente empinada. Si<br />

dicha pared de1 canon tiene un declive pequeno, el<br />

costo de un tanque de pulsation seria prohibitivo y se<br />

debera colocar una vjlvula de destio simultineo cer-<br />

ca de la turbina. La Figura 3 ilustra un instalacion<br />

tipica.<br />

173<br />

facility. Thrust blocks must be provided wherever<br />

the penstock changes direction eit?,er laterally or<br />

vertically in order to counteract unbalanced<br />

pressure and momentum-change forces (normally<br />

pressure fcrces are much the larger). The<br />

penstock must be designed to resist total static<br />

pressures plus transient pressures arising due to<br />

sudden load changes. The maximum transient.<br />

pressure increase or decrease will result from<br />

sudden closure or opening respectively of turbine<br />

wicket gates or control valves. In practice, max-<br />

imum velocities in the penstock are between 2.5<br />

and 3.5 meters/second. The maximum pressure<br />

change is given approximately by:<br />

AP = eAVc (2)<br />

where e is the density of water, AV is the change<br />

in velocity produced in the penstock, and c is the<br />

speed of sound in the penstock (normally<br />

1200-1500 meters/second). AP will have the<br />

algebraic sign associated with AV. For longer and<br />

larger penstocks, it will be uneconomical to<br />

utilize a penstock wall thickness sufficiently<br />

large enough to withstand such a pressure rise.<br />

A surge tank, located as near the turbine as<br />

possible, will provide pressure relief economically<br />

if the canyon wall is steep. If the canyon wall has<br />

a flat slope, cost of a surge tank may be pro-<br />

hibitive and a sirnultaneous bypass valve must be<br />

located near the turbine. Figure 3 shows a typical<br />

installation.<br />

In theory, the bypass valve must opened slowly<br />

before the turbine is started. Once flow has been<br />

established in the penstock, the turbine is started<br />

with the valve being closed simultaneously main-<br />

taining a constant rate of flow In the penstock.<br />

For load-reduction operation, flow through the<br />

turbine is reduced while the valve is<br />

simultaneously closed maintaining a constant<br />

flow rate in the penstock. Mechanical coupling of<br />

the valve and the turbine control is simplest, but<br />

electronic controls provide more advantageous<br />

operation. To conserve water, valve controls can<br />

close the valve slowly after equilibrium operation<br />

conditions have been reached. If water wasting is<br />

acceptable, the valve setting can :emain cons-<br />

tant until another load change is required. Pro-<br />

perly designed Howell Bunger valves3 provide the<br />

most economical bypass valves for larger plants.<br />

Any quick-acting valve can be used for smaller<br />

plants.<br />

Air vents should be installed at the upstream<br />

end of the penstock to limit negative pressures<br />

produced by accidental closure of the upstream

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!