07.12.2012 Aufrufe

Erdfernerkundung - Numerische Physik: Modellierung

Erdfernerkundung - Numerische Physik: Modellierung

Erdfernerkundung - Numerische Physik: Modellierung

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

5.5. CAWSES 263<br />

Abbildung 5.31: Specific energy<br />

loss according to the Bethe–<br />

Bloch equation for protons<br />

[189]<br />

In a dynamic magnetosphere, the same approach can be used, although it is pretty time<br />

consuming.<br />

The result of this model is a spatial pattern of precipitating particles on top of the atmosphere.<br />

• a model to describe the ionization of the atmosphere by precipitating charged particles.<br />

This will be described in detail below.<br />

The result of such a model is an ion–pair production rate in the atmosphere, depending<br />

on the horizontal coordinate (as inferred from the model magnetosphere above) and the<br />

vertical coordinate (depending on the energy spectrum of the precipitating particles).<br />

• a model to describe the chemistry of the atmosphere. Such a model includes a large number<br />

of chemical reactions as well as some prescribed (or even self-consistently solved) transport<br />

and needs the ion–pair production rates as input.<br />

The result is a 2D or 3D (depending on the dimensionality of the model atmosphere) ozone<br />

concentration that can be compared to the observations.<br />

Thus the chain from observation 1 (SEPs in space) to observation 2 (ozone) leads through 3<br />

models.<br />

§ 870 For the present day magnetosphere, the horizontal pattern of precipitation and therefore<br />

also ion–pair production is simple: SEPs precipitate inside the polar cap but not outside.<br />

§ 871 The vertical pattern of ion–pair production is regulated by the spectrum of the incident<br />

particles. The primary energy loss mechanism for charged protons in the energy range under<br />

study is ionization. Formally, this process is described by the Bethe–Bloch equation<br />

dE<br />

dx<br />

Z2 � 2 2mev<br />

ne ln<br />

v2 〈EB〉 − ln(1 − β2 ) − β 2<br />

�<br />

. (5.3)<br />

= − e4<br />

4πε 2 0 me<br />

The specific energy loss dE/dx is the energy dE deposited per unit path length dx along<br />

the particle track. It depends on (1) a number of constants (first fraction; the elementary<br />

charge e, the electron mass me and the absolute permeability ε0), (2) the parameters of the<br />

incident particle (second fraction: charge Z and speed v), and (3) the electron density ne of<br />

the absorber. The first term in the bracket contain the relative kinetic energy compared to<br />

the average bond energy 〈EB〉 in the target material. The remaining terms are relativistic<br />

corrections with β = v/c.<br />

§ 872 Figure 5.31 shows the specific energy loss depending on the particle energy for protons.<br />

The specific energy loss decreases with increasing particle energy (interval 3) because the<br />

c○ M.-B. Kallenrode 2. Juli 2008

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!