07.12.2012 Aufrufe

Erdfernerkundung - Numerische Physik: Modellierung

Erdfernerkundung - Numerische Physik: Modellierung

Erdfernerkundung - Numerische Physik: Modellierung

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

5.5. CAWSES 267<br />

Abbildung 5.35: Energy losses of 1–<br />

500 MeV protons calculated with a<br />

Monte Carlo simulation (circles) and<br />

Bethe–Bloch (solid line) [217]<br />

Orbiting Environmental Satellite) even suggest a slight preference for larger pitch angles<br />

inside the polar cap at altitudes of 900 km (Bornebusch, priv. comm.).<br />

§ 883 Energy spectra of precipitating SEPs can be described by a broken power law [74, 61,<br />

114]: I(E) = I0 · (E/E0) −γ with I0 being the differential intensity at a reference energy E0,<br />

E the energy, and γ the spectral index. Around some 100 MeV the spectrum flattens and<br />

intensities increase due to the background of galactic cosmic rays [71]. Observed spectra are<br />

fitted simultaneously by up to three power-laws; the breaks between the power laws are not<br />

at fixed energies but are determined such that the best fit over the entire spectrum results.<br />

Monte Carlo Simulation<br />

§ 884 GEANT 4 [3, 67] allows for a multitude of interactions between the precipitating<br />

particle and the absorber atmosphere. Our model considers as subset of particles protons,<br />

electrons, positrons, αs, and photons. Interactions are limited to electromagnetic ones: multiple<br />

scattering, Compton-scattering, ionization, photo electric effect, gamma conversion,<br />

annihilation, pair production, and production of bremsstrahlung. Secondaries produced in<br />

such interactions are tracked up to a cut-off length for particle propagation of 1 m. If particle<br />

energies are lower, the model switches to continuous energy loss.<br />

§ 885 Precipitating particles have an angular distribution and an energy spectrum. The<br />

Monte-Carlo simulation itself is performed for mono-energetic pencil-beams of 100 particles;<br />

angles of incidence vary between 0 ◦ and 80 ◦ in steps of 10 ◦ . The energies range from 1 MeV<br />

to 500 MeV in 109 logarithmic equidistant steps for protons and 1 MeV to 50 MeV in 340<br />

steps for electrons. Statistics are tested by increasing the number of incident particles by a<br />

factor of 10 – the results are essentially the same.<br />

§ 886 The total energy input into each layer is the sum of the energy depositions of the<br />

individual particles; a division by the layer’s thickness yields the linear energy transfer (LET)<br />

dE/dx. Thus the primary result of the simulation is the LET as function of altitude, initial<br />

kinetic energy and impact angle.<br />

§ 887 Ion pair production rates for individual particle events are obtained by folding the<br />

LETs with the observed particle spectrum and angular distribution and assuming an average<br />

ionization energy of 35 eV per ion pair [186].<br />

c○ M.-B. Kallenrode 2. Juli 2008

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!