04.06.2022 Views

Calculo 2 De dos variables_9na Edición - Ron Larson

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECCIÓN 13.3 Derivadas parciales 915

En los ejercicios 59 a 64, calcular las derivadas parciales de

primer orden con respecto a x, y y z.

En los ejercicios 65 a 70, evaluar f x , f y y f z en el punto dado.

En los ejercicios 71 a 80, calcular las cuatro derivadas parciales

de segundo orden. Observar que las derivadas parciales mixtas

de segundo orden son iguales.

En los ejercicios 81 a 88, para f(x, y), encontrar todos los valores

de x y y, tal que f x (x, y) = 0 y f y (x, y) = 0 simultáneamente.

En los ejercicios 89 a 92, utilizar un sistema algebraico por computadora

y hallar las derivadas parciales de primero y segundo

orden de la función. Determinar si existen valores de x y y tales

que y simultáneamente.

En los ejercicios 93 a 96, mostrar que las derivadas parciales

mixtas f xyy , f yxy y f yyx son iguales.

Ecuación de Laplace

En los ejercicios 97 a 100, mostrar que la

función satisface la ecuación de Laplace

97. 98.

99. z e x sen y 100.

Ecuación de ondas

En los ejercicios 101 a 104, mostrar que la

función satisface la ecuación de ondas

101. z sen(x ct) 102.

103. 104. z sen wct sen wx

Ecuación del calor

En los ejercicios 105 y 106, mostrar que la

función satisface la ecuación del calor

105. 106.

En los ejercicios 107 y 108, determinar si existe o no una función

f(x, y) con las derivadas parciales dadas. Explicar el razonamiento.

Si tal función existe, dar un ejemplo.

En los ejercicios 109 y 110, encontrar la primera derivada parcial

con respecto a x.

z e t sin x c

z e t cos x c

z/t c 2 2 z/x 2 .

z lnx ct

z cos4x 4ct

2 z/t 2 c 2 2 z/x 2 .

z arctan y x

z 1 2e y e y sin x

z 5xy

2 z/x 2 2 z/y 2 0.

f y x, y 0

f x x, y 0

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

f x, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

F x, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

f x, y, z 3x 2 y 5xyz 10yz 2

H x, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

fx, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

f x, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

F x, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

f x, y, z 3x 2 y 5xyz 10yz 2

Hx, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

fx, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

Fx, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

fx, y, z 3x 2 y 5xyz 10yz 2

Hx, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

fx, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

f x, y ln x 2 y 2 1

f x, y e x2 xy y 2

f x, y 3x 3 12xy y 3

f x, y

1

x

1

y

xy

f x, y x 2 xy y 2

f x, y x 2 4xy y 2 4x 16y 3

f x, y x 2 xy y 2 5x y

f x, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

Fx, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

fx, y, z 3x 2 y 5xyz 10yz 2

Hx, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

f x, y, z

xyz

f yyx

f yxy ,

f xyy ,

f x, y

xy

x

y

f x, y

ln

x

x 2 y 2 f x, y 25 x 2 y 2

f x, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

F x, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

f x, y, z 3x 2 y 5xyz 10yz 2

Hx, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

f x, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

Fx, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

fx, y, z 3x 2 y 5xyz 10yz 2

H x, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

fx, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

Fx, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

fx, y, z 3x 2 y 5xyz 10yz 2

H x, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

f x, y, z tan y 2 z e z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

fx, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

Fx, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

fx, y, z 3x 2 y 5xyz 10yz 2

H x, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

Desarrollo de conceptos

111. Sea f una función de dos variables x y y. Describir el procedimiento

para hallar las derivadas parciales de primer orden.

112. Dibujar una superficie que represente una función f de dos

variables x y y. Utilizar la gráfica para dar una interpretación

geométrica de

y

113. Dibujar la gráfica de una función cuya derivada

sea siempre negativa y cuya derivada

sea siempre positiva.

114. Dibujar la gráfica de una función cuyas derivadas

y sean siempre positivas.

115. Si es una función de y tal que y son continuas,

¿qué relación existe entre las derivadas parciales mixtas?

Explicar.

f yx

f xy

y

x

f

f y

f x

z fx, y

f y

f x

z fx, y

fy.

fx

In Exercises 59–64, find the first partial derivatives with respect

to

and

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.

Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such

that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the

first and second partial derivatives of the function. Determine

whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives

and

are equal.

93.

94.

95.

96.

Laplace’s Equation

In Exercises 97–100, show that the function

satisfies Laplace’s equation

97. 98.

99. 100.

Wave Equation

In Exercises 101–104, show that the function

satisfies the wave equation

101. 102.

103. 104.

Heat Equation

In Exercises 105 and 106, show that the function

satisfies the heat equation

105. 106.

In Exercises 107 and 108, determine whether there exists a

function

with the given partial derivatives. Explain your

reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with

respect to

109.

110. f x, y, z x senh y z

y 2 2 y 1 z

fx, y, z tan y 2 ze z2 y 2 z

x.

f y x, y x 4y

f x x, y 2x y,

f y x, y 2 sen 3x 2y

f x x, y 3 sen 3x 2y ,

f x, y

z

e t sen x c

z

e t cos x c

z/ t c 2 2 z/ x 2 .

z

sen ct sen x

z ln x ct

z cos 4x 4ct

z sen x ct

2 z/ t 2 c 2 2 z/ x 2 .

z

arctan y x

z

e x sen y

z

1

2 ey e y sen x

z

5xy

2 z/ x 2 2 z/ y 2 0.

f x, y, z

2z

x

y

f x, y, z

e x sen yz

f x, y, z x 2 3xy 4yz z 3

f x, y, z

xyz

f yyx

f yxy ,

f xyy ,

fx, y

xy

x

y

fx, y

ln

x

x 2 y 2 fx, y 25 x 2 y 2

fx, y

x sec y

f y x, y 0

f x x, y 0

y

x

fx, y ln x 2 y 2 1

fx, y e x2 xy y 2

fx, y 3x 3 12xy y 3

fx, y

1

x

1

y

xy

fx, y x 2 xy y 2

fx, y x 2 4xy y 2 4x 16y 3

fx, y x 2 xy y 2 5x y

fx, y x 2 xy y 2 2x 2y

f y x, y 0

f x x, y 0

y

x

f x, y ,

z

arctan y x

z

cos xy

z 2xe y 3ye x

z

e x tan y

z ln x y

z x 2 y 2 z x 4 3x 2 y 2 y 4

z x 2 2xy 3y 2 z x 2 3y 2

z 3xy 2 1, 2, 1

f x, y, z 3x 2 y 2 2z 2 ,

0, 2 , 4

f x, y, z z sen x y ,

3, 1, 1

f x, y, z

xy

x y z ,

fx, y, z

x

yz , 1, 1, 1 2, 1, 2

f x, y, z x 2 y 3 2xyz 3yz,

f x, y, z x 3 yz 2 , 1, 1, 1

f z

f y ,

f x ,

G x, y, z

1

1 x 2 y 2 z 2

F x, y, z ln x 2 y 2 z 2 w

7xz

x

y

w x 2 y 2 z 2

f x, y, z 3x 2 y 5xyz 10yz 2

Hx, y, z sen x 2y 3z

z.

y,

x,

13.3 Partial Derivatives 915

CAS

111. Let be a function of two variables and Describe the

procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables

and

Use the sketch to give geometric interpretations of

and

113. Sketch the graph of a function whose derivative

is always negative and whose derivative

is always

positive.

114. Sketch the graph of a function whose derivatives

and are always positive.

115. If is a function of and such that and are

continuous, what is the relationship between the mixed

partial derivatives? Explain.

f yx

f xy

y

x

f

f y

f x z f x, y

f y

f x z f x, y

f y.

f

x

y.

x

f

y.

x

f

WRITING ABOUT CONCEPTS

sen

sen

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!