04.06.2022 Views

Calculo 2 De dos variables_9na Edición - Ron Larson

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

60.

SECCIÓN 14.6 Integrales triples y aplicaciones 1037

14.6 Triple Integrals and Applications 1037

14.6 Triple

14.6

Integrals

Triple Integrals

and Applications

and Applications 1037 1037

14.6 Triple Integrals and Applications 1037

z

60. I z

60. x 1 1

I

12 x 12m ma2

a 2 b 2

b 2 CAPSTONE

I y 1 12 mb2 c 2 z

12m a 2 1b 2

y mb2 c z

60.

a CAPSTONE

x 12m 1

2 2 c z

CAPSTONE

60. I c

a

68. Think About It Of the integrals (a)–(c), which one is

z ma2 3 2 1

I z 1 12 ma2 c 2

b

68. Para pensar De las integrales a c), ¿cuál es igual a

12 mb2 x 12m

c 2 a 2 b 2 c

2 b a

68. Think

CAPSTONE

1

About It Of the integrals (a)–(c), which one is

y 12 1 mb2 2 c

a

68. Think equal to fx, y, z dz dy dx? Explain.

2

1 0 1 Explicar.

12 ma2 c 2

3 2 About 1 It Of the integrals (a)–(c), which one is

I y 121

b

equal to f x, y, z dz dy dx? Explain.

z 12 m mb2 c 2

a2 2

c b

a

68. Think About 3 2 It1

Of the integrals (a)–(c), which one is

1

2

equal 1 0 to 1 fx, y, dz dy dx? Explain.

I 2

3 2

1

1

0 1

z 12 ma2 c 2

3 2 1

b

equal to fx, y, z dz dy dx? Explain.

2

1 0 1

b

3 2a)

1 fx, y, z dz dx dy

b a) fx, 1

3

0

2 1

y, z 1 dz dx dy

c

a b

1 0a)

3 2 1

1 f x, y, dz dx dy

c a

1 2 3

2 b

a) 1 0 1 fx, y, z dz dx dy

x 2 a

y

1

x 2 2

b) 2 3 fx, y, dx dy dz

c

b

1 0 1

c a y

1

0

2

1

3

x 2 2

b) fx, y, z dx dy dz

y

1 0 1

x 2c

2a

b) 1 2 3 f x, y, dx dy dz

y

21

03

11

x 2 2

b) fx, y, z dx dy dz

y

2 3c)

1 1 0 1 fx, y, z dy dx dz

c) fx, 0

2

1

3

y, z 1 dy dx dz

0 1c)

2 3 1

1 f x, y, dy dx dz

c) 0 1 1 fx, y, z dy dx dz

I x

1

I y

1

I z

1

Momentos de inerciaMEn los ejercicios 61 y 62, dar una integral

triple

Moments

que represente

of Inertia

el

In

momento

Exercises

de inercia

61 and

con

62,

respecto

set up a

al

triple

eje z Valor

Average

promedioMEn

Value In Exercises

los ejercicios

69–72,

69 a

find

72, hallar

the average

el valor

value

promedio

of

Moments

de

Moments integral

of Inertia

la región

that of

sólida

Inertia gives

In Exercises

Q

the

de

In moment

densidad

Exercises

61 and

of

.

inertia 61

62,

and

set

about

up

62,

a

the set

triple

zup -axis triple of the Average

Average

Value

the

de

function

In

la

Value

Exercises

función

over In

sobre

the Exercises

69–72,

given

el sólido

solid.

find

69–72,

dado.

The

the

find

El

average

average

valor

the value average

value

promedio

of

of

a value continuous

de una

of

integral that Moments

solid

gives of

region

the Inertia

Q

moment In

of density

of inertia Exercises

.

about 61 the and z-axis 62, set of the up a triple

integral that gives the moment of inertia about the -axis of the the function Average

61.

función

over Value

the given In

continua

f x,

f(x,

y,

solid. Exercises

z

y, z)

over

The

sobre

a

average 69–72, find

solid

una

region

value the

región

Q

of

sólida

is

a average continuous

function the function f x, y, zover over the a solid given region solid. The Q isaverage value of a contin-

value of

the function over the given solid. The average value

Q

of

es

continuous

function x, y, over solid region is

solid region integral Q of x, that density y, gives z: 1 . the ≤moment x ≤ 1, 1 of inertia ≤ y ≤ about 1, 0 ≤ the z ≤z-axis 1 x of the

solid region

of density .

solid 61. Qregion

x, Qy, of z : density 1 x.

1, 1 y 1, 0 z 1 x 1uous 1 function f x, y, z over a solid region Q is

61. Q 1

fx, y, z dV

61.

x, y, z :

x,

1

62. x 2 y, x

y: 1,

z 2

1

1,

y 1, 0 z

1, 1 x

V V f x, y, z dV

Q x, y, z: x 2 y 2 ≤ 1, 0 ≤ z ≤ 4 x 2 y 2 fx, y, z dV

61.

Q

x 2 Q

y 2 x, y,

z 2 z : 1 x 1, 1 y 1, 0 z 1 x V 1 fx, y, dV

62. Q x, y, z : x 2 y 2 1, 0 z 4 x 2 y 2

Q

2 2 2

fx, y, z dV

Q

donde where

Ves is el the volumen de of la the región solid region sólida Q.

62. Q x, y, z : x 2 x 2 y

y 2 2 1,

z 2

V

0 z 4 x 2 y 2

Q

62.

kxx, 2 y, : 2 2 1, 2 2 where V is the Q volume of the solid region Q.

62.

En

kx

los 2 Q x, y, z : x 2 y 2 1, 0 z 4 x 2 y 2

where

is the volume of the solid region Q.

ejercicios 63 y 64, utilizando la descripción de región só-

where 69. f(x, fx, Vy, y, is z) zthe zvolume 2 z 2 4 sobre 4 over of the el the cubo solid cube en region in el the primer Q. first octante bounded acotado por by

kx

los planos coordenados, y los planos

lida, In Exercises kx 2

dar la integral 2

69. fx, y,

63 and para 64, using 1 y z 1.

a) la masa, the description b) el centro of the de masa solid region,

69.

z

fx, the

z

coordinate 2 y, 4 over planes and the planes x 1, y 1, and z 1

y c) el

2 the cube

over the

in the

cube

first

in

octant

the first

bounded

octant bounded

by

by

In Exercises

momento set up

63

the

and

de integral

64, using

inercia con for

the

(a)

description

respecto the mass, al eje (b)

of the

z. the

solid

center

region, the coordinate 69. fx, y, planes z zand the planes x 1, y 1, and z 1

In Exercises 63 and 64, using the description of the of solid mass, region, and 70. 70. f

the fx, x,

coordinate 2 4 over the cube in the first octant bounded by

y, z z xyz

planes

sobre over the and

el cubo cube the planes in en the el primer first octant 1,

octante bounded 1, and

acotado by por the

set up the In

(c)

integral Exercises

the moment

for 63 (a) and

of

the 64,

inertia

mass, using

about

(b) the the description

the

center

z-axis.

of mass, of the and solid region, 70. fx, y, z

the

los coordinate

xyz

coordinate

over

planos coordenados planes

the

planes

cube

and

in

and

the

the

the

y los planes

first

planes

octant

x

planos x x 4,

bounded

1, y

4, y y 4,

by

1,

and

the

and z 1

set up the integral for (a) the mass, (b) the center of mass, and 70. fx, y, xyz over the cube in the first octant bounded y z 4. by 4 the

(c) the moment 63. set El up sólido the of inertia integral acotado about for por (a) the z the z-axis.

4 mass, x 2 (b) y 2 the y zcenter 0 con of la mass, función and coordinate 70. fx,

63. de The densidad solid bounded by z 4 x 2 y 2 and z 0 with density 71. 71. f fx, planes y,

x, y, y, z

z z and xyz

x the over

y planes the

z

xcube 4, in ythe 4, first and octant z bounded 4 by the

(c) the moment of inertia about the -axis.

coordinate planes and the

sobre over planes the el tetraedro tetrahedron 4,

4,

en in and

el the primer first (c) the moment of inertia about the z-axis.

octante

63. The solid cuyos vértices son

y

64. El function

bounded by with vertices 0, 0, 2, 0, , 0, 2, 0 and 0, 2

sólido en el primer kz

and with density

71. fx, y, z

coordinate

x y

planes

z over

and

the

the

tetrahedron

planes x

in

4,

the

y

first

4,

octant

and z 4

63. The solid bounded

z 4

by 0, 0, 0, 2, 0, 0, 0, 2, 0 0, 0, 2

octante x 2 y 2

acotado 2 z por and

0

los planos with coordenados

function The y xsolid 2 yin 2 the kz

2 y 2 and z 0 with density

density

71. fx, y, over the tetrahedron in the first octant

function 63. The solid kz bounded by z 4 x 2

with vertices 0, 0, 0 , 2, 0, 0, 2, and 0, 0, 2

64.

71. fx, y, z x y z over the tetrahedron in the first octant

z 2 first 25 octant con función bounded de by densidad the coordinate planes 72. 72. with

f(x, fx, y, y, vertices

z) z x 0, 0,

y

sobre over , 2,

el the 0, ,

sólido solid 0, 2,

acotado bounded and 0,

por la by 0, esfera the xsphere

2 y 2

64. The solid

function

and

in the

x 2 first

y 2 octant

kz

z 2 bounded

25 with

by

density

the coordinate

function

planes

72. fx, y, z

with

kxy

x 2 x

vertices

y 2 y over

0,

3. z 2 the

0, 0

3

solid

, 2, 0,

bounded

0 , 0, 2, 0

by

and

the

0,

sphere

0, 2

64. The solid in the first octant bounded by the coordinate planes

72. fx, y, over the solid bounded by the sphere

and x64. 2 The y 2 solid with density function

x 2 y 2 z 2 3

and

2 z 2 in 2 25the 2 first octant bounded by the kxycoordinate planes

72. fx,

with density function

2 y, 2 z 2 x y over the solid bounded by the sphere

25

kxy

and x 73. Hallar Find the la región solid region sólida Q

where donde the la integral triple integral triple

Desarrollo WRITING 2 y

ABOUT 2 z

de 2 25 with density function kxy CAS x 2 y 2 z 2 3

conceptos CONCEPTS

CAS 73. Find the solid region Q where the triple integral

WRITING ABOUT CONCEPTS

CAS 73. Find the solid region where the triple integral

WRITING 65. Define a ABOUT triple integral CONCEPTS and describe a method of evaluating CAS 73. Find the solid

65. Define 65. a Definir triple una integral triple y describir un método para evaluar

una integral triple.

2 y 2 3z 2 dV

11 2x 2x 2 region 2 y 2 Q where 2 3z 3z 2 the triple integral

WRITING 2 dV

a triple

integral

ABOUT

integral.

and describe

CONCEPTS

65. Define triple integral and describe

a method of

method

evaluating

of evaluating 1 2x

a triple 65. integral. Define a triple integral and describe a method of evaluating

Q

2x 2 2 3z 2 dV

66. Determine triple integral.

1 2x

whether the moment of inertia about the y-axis

Q es is un a maximum. máximo. 2 y

Utilizar 2 3z

Use a computer un sistema 2 dV

algebra algebraico system por to computadora approximate y

66. Determine 66. Determinar a triple si el momento de inercia con respecto al eje y del

of

whether

integral.

Q

66. Determine the cylinder whether

the in Exercise the moment

of inertia

59 will of

about

increase inertia

the

about

y-

or

axis

decrease the y-axis

for is a maximum. Q

aproximar the Use el a valor computer

value. máximo. What

algebra

is ¿Cuál the

system

exact es el to

maximum valor approximate máximo value? exacto?

of the 66. cylinder cilindro Determine del ejercicio 59 aumentará o disminuirá

the nonconstant Exercise whether

density

59 the will moment increase of

x, y, z

or inertia decrease

x 2 about

z 2 for con the la y- densidad

constante

y

74. 74. Hallar

axis

is maximum. Use computer algebra system to approximate

of the cylinder in Exercise 59 will increase or decrease and a for 4. the maximum is a maximum. value.

Find the la región

What Use

solid region sólida

is a the computer

Q

exact

where donde

maximum algebra system

the la integral

value? to approximate

the nonconstant of the cylinder density in x, Exercise y, z 59 xwill 2 increase z 2 and a 4.

the maximum value. What is the exact triple maximum integral triple value?

CAS

67. the Consider nonconstant two solids, density solid x, A y, and solid B,

2 or

of equal 2 decrease for CAS

and weight 4.

CASas74. Find the solid

the maximum

region Q

value.

where

What

the triple

is the

integral

exact maximum value?

67. Consider 67. Considerar the el sólido A y el sólido B de pesos iguales que se

shown

two

nonconstant

solids,

below.

solid

density

A and solid

x, y,

B,

z

of equal

x 2 weight

z 2 and

as

a CAS 74. Find the solid region where the triple integral

67. Consider two solids, solid and solid B, of equal weight as CAS 74. Find the

shown below. muestran en la figura.

11

solid

xx 22

region

yy 22

Q

zz 22

where

dV

the triple integral

67. Consider two solids, solid A and solid B, of equal weight as

dV

shown (a) Because below. the solids have the same weight, which has the 1 x 2 y 2 z 2 dV

Q

(a) Because a) shown Como the

below. los sólidos tienen el mismo peso, ¿cuál tiene la

greater

solids

density?

have the same weight, which has the

2 2 2 dV

(a) Because the solids have the same weight, which has the

1 x 2 y 2 z 2 dV

Q

greater (a) densidad density? Because mayor? the solids have the same weight, which has the es is Qun a maximum. máximo. Utilizar Use a computer un sistema algebraico system por to computadora approximate y

(b) greater Which density? solid has the greater moment of inertia? Explain. is a maximum. Q

aproximar the Use el a valor computer

value. máximo. What

algebra

is ¿Cuál the

system

exact es el to valor maximum

approximate máximo value? exacto?

(b) Which b) ¿Cuál solid

greater

has sólido the

density?

greater tiene moment el momento of inertia? de Explain. inercia mayor?

is maximum. Use computer algebra system to approximate

(b) the maximum value. What is the exact maximum value?

(c) Which

Explicar. The solids solid are has rolled the greater down moment an inclined of inertia? plane. They Explain.

is a maximum. Use a computer algebra system to approximate

are 75. 75. Encontrar the Solve maximum for a en in value. the la integral triple What integral. triple. is the exact maximum value?

(c) The solids

(b) Which

(c) The started

are

solids

rolled

solid

at the are

down

has the

same rolled

an

greater

time down

inclined

moment

and an at

plane.

of

inclined the same

They

inertia?

plane. height.

are

Explain.

They Which are75. Solve for

the

a in

maximum

the triple

value.

integral.

What is the exact maximum value?

11

3ay 3 a y 2 4 x y 2

will reach the bottom first? Explain.

14

dz dx dy

0

2 4xy

started c) (c) Los at The the sólidos same solids se time are hacen rolled and rodar at down the hacia same an inclined abajo height. en Which plane. un plano They inclinado.

Empiezan al mismo tiempo y a la misma altura.

2 4

are

Solve for in the triple 2 integral.

started at the same time and at the same height. Which

dz dx dy 14

1 375. a

Solve

y

for

x a in the triple integral.

1 3 a y 2

will reach started the bottom at the first? same Explain. time and at the same height. Which

2 4 x y 14

0 00

dz a

15

a dx dy

2

will reach the bottom first? Explain.

1 3 a y 2 4 x y 2 14 15

¿Cuál will llegará reach the abajo bottom primero? first? Explicar. Explain.

dz dx

0 0 a

15 dy 14

0 0 a dz dx dy 15

76. 76. Determinar Determine 0 0

el the avalor value de of b de b such manera that 15que the el volumen of del the elipsoide ellipsoid

76. Determine

76. Determine x 2 the value

y 2 bthe 2 of b

value

such

z 2 9of that such 1

the

es 16

volume

that . the

of

volume

the ellipsoid

of the ellipsoid

x 2 76. y 2 Determine b 2 z 2 9 1 es 16 .

Axis of

2 2 2 the value 2 of b such that the volume of the ellipsoid

es 16 .

x es 16 .

Axis of

Axis revolution of

PUTNAM 2 y 2 b

EXAM 2 z 2 9 1

CHALLENGE

revolution PUTNAM EXAM CHALLENGE

Axis of

revolution

Axis Eje de of

Preparación PUTNAM 77. EvaluateEXAM del CHALLENGE examen Putnam

Axis of

revolution

revolution

revolución 77. Evaluate

PUTNAM EXAM CHALLENGE

Axis of

77. Evaluate 1 1 1

revolution

Eje revolution

Axis

de

of

1

77. 1límEvaluar

Evaluate 1 . . . cos 2

n→ 0 0 0 2n x 1 x . . .

2 x n dx 1 dx . . . 2 dx n .

lím . . . 1 1

cos

revolución

2 1

revolution

n→ 0 0 0 2n x 1 x . . .

lím . . . cos 2 x n dx 1 dx . . . 1 1 1 2 2 dx n .

Solid A

Solid B

n→ 0 0 0 2n 1 . . .

2 n dx 1 dx . . . 2 dx n .

lím . . . cos 2

Solid A

Solid B

n→ This problem 0 0 was composed 0 2n x 1 x . . .

2 x n dx 1 dx . . . 2 dx n .

by the Committee on the Putnam Prize Competition.

Solid Solid This problem © was The composed Mathematical by the Association Committee of on America. the Putnam All rights Prize reserved. Competition.

Sólido Solid A A

Sólido Solid BB

This problem was composed by the Committee on the Putnam Prize Competition.

x 2 y 2 z 2

kx 2

kz

Para discusión

0 1 1

x, y, z x 2 z 2

kxy

© The Mathematical Este Association of America. All rights reserved.

This problema

The Mathematical was fue preparado composed por

Association by the el on the Prize of Committee America. All on rights the Putnam reserved. Prize Competition.

© The The Mathematical Association of of America. Todos All rights los derechos reserved. reservados.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!