04.06.2022 Views

Calculo 2 De dos variables_9na Edición - Ron Larson

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECCIÓN 15.8 Teorema de Stokes 1137

15.8 Ejercicios

En los ejercicios 1 a 6, hallar el rotacional del campo vectorial F.

En los ejercicios 7 a 10, verificar el teorema de Stokes evaluando

como integral de línea e integral doble.

En los ejercicios 11 a 20, utilizar el teorema de Stokes para evaluar

Utilizar un sistema algebraico por computadora y

verificar los resultados. En cada uno de los casos, C está orientada

en sentido contrario a las manecillas del reloj como se vio

anteriormente.

16.

17.

sobre de un pétalo de

en el

primer octante

18.

la porción en el primer octante de

sobre

19.

es el vector unitario normal a la superficie, dirigido hacia abajo.

20.

la porción en el primer octante de sobre x 2 y 2 a 2 Movimiento de un líquido En los ejercicios 21 y 22, el movimiento

de un líquido en un recipiente cilíndrico de radio 1 se

describe mediante el campo de velocidad

Hallar

donde S es la superficie superior del recipiente

cilíndrico.

21. 22.

25. Sean f y g funciones escalares con derivadas parciales continuas,

y supóngase que C y S satisfacen las condiciones del teorema

de Stokes. Verificar cada una de las identidades siguientes.

26. Demostrar los resultados del ejercicio 25 para las funciones

y Sea S el hemisferio

27. Sea C un vector constante. Sea S una superficie orientada con

vector unitario normal N, limitada o acotada por una curva suave

C. Demostrar que

S C N dS 1 2C

C r dr.

z 4 x 2 y 2 .

gx, y, z z.

f x, y, z xyz

Fx, y, z zi yk

Fx, y, z i j 2k

6, find the curl of the vector field F.

7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

–20, use Stokes’s Theorem to evaluate

r algebra system to verify your results. In each

ted counterclockwise as viewed from above.

o cuyos vértices son

o cuyos vértices son

over

in the first octant

-octant portion of

over

wnward unit normal to the surface.

-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

x 2 y 2 a 2

xyzi yj zk,

0 y a

0 x a,

xyzi yj zk

x 2 y 2 16

x 2 z 2 16

x 2 y 2 16

yzi 2 3y j x 2 y 2 k,

r 2 sen 2

2x

3y

ln x 2 y 2 i arctan x y j k

x 2 y 2

x 2 i z 2 j xyzk

x 2 y 2

z 2 i yj zk

z ≥ 0

x 2 y 2 ,

4xzi yj 4xyk

z ≥ 0

x 2 y 2 ,

z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

2yi 3zj xk

C F

dr.

0 y a

0 x a,

z 2 i x 2 j y 2 k

z

12, primer octante

xyzi yj zk

x 2 y 2

y z i x z j x y k

z 0

x 2 y 2 ,

y z i x z j x y k

F

dr

arcsen yi 1 x 2 j y 2 k

e x2 y 2 i e y2 z 2 j xyzk

x sen yi y cos xj yz 2 k

2zi 4x 2 j arctan xk

x 2 i y 2 j x 2 k

2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

ercises

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

Fx, y, z.

z x 2

S:

x 2 y 2 ≤ a 2

Fx, y, z xyzi yj zk,

N

0 ≤ y ≤ a

0 ≤ x ≤ a,

S: z x 2 ,

Fx, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 ≤ 16

Fx, y, z yzi 2 3yj x 2 y 2 k,

r 2 sin 2

z 9 2x 3y

S:

Fx, y, z lnx 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

Fx, y, z x 2 i z 2 j xyzk

C F dr.

C

F T ds C F dr

Desarrollo de conceptos

23. Enunciar el teorema de Stokes.

24. Dar una interpretación física del rotacional.

sen

In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate

Use a computer algebra system to verify your results. In each

case,

is oriented counterclockwise as viewed from above.

11.

triángulo cuyos vértices son

12.

triángulo cuyos vértices son

13.

14.

15.

16.

17.

over

in the first octant

18.

the first-octant portion of

over

19.

is the downward unit normal to the surface.

20.

the first-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

S:

x 2 y 2 a 2

F x, y, z xyzi yj zk,

N

0 y a

0 x a,

S: z x 2 ,

F x, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 16

F x, y, z yzi 2 3y j x 2 y 2 k,

r 2 sen 2

z 9 2x 3y

S:

F x, y, z ln x 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

F x, y, z x 2 i z 2 j xyzk

S: z 4 x 2 y 2

F x, y, z z 2 i yj zk

z ≥ 0

S: z 9 x 2 y 2 ,

F x, y, z 4xzi yj 4xyk

z ≥ 0

S: z 1 x 2 y 2 ,

F x, y, z z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

C:

F x, y, z arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

C:

F x, y, z 2yi 3zj xk

C

C F

dr.

0 y a

0 x a,

S: z y 2 ,

F x, y, z z 2 i x 2 j y 2 k

S: 6x 6y z 12, primer octante

F x, y, z xyzi yj zk

S: z 1 x 2 y 2

F x, y, z y z i x z j x y k

z 0

S: z 9 x 2 y 2 ,

F x, y, z y z i x z j x y k

C

F

T ds

C

F

dr

F x, y, z arcsen yi 1 x 2 j y 2 k

F x, y, z e x2 y 2 i e y2 z 2 j xyzk

F x, y, z x sen yi y cos xj yz 2 k

F x, y, z 2zi 4x 2 j arctan xk

F x, y, z x 2 i y 2 j x 2 k

F x, y, z 2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

15.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate

Use a computer algebra system to verify your results. In each

case,

is oriented counterclockwise as viewed from above.

11.

triángulo cuyos vértices son

12.

triángulo cuyos vértices son

13.

14.

15.

16.

17.

over

in the first octant

18.

the first-octant portion of

over

19.

is the downward unit normal to the surface.

20.

the first-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

S:

x 2 y 2 a 2

F x, y, z xyzi yj zk,

N

0 y a

0 x a,

S: z x 2 ,

F x, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 16

F x, y, z yzi 2 3y j x 2 y 2 k,

r 2 sen 2

z 9 2x 3y

S:

F x, y, z ln x 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

F x, y, z x 2 i z 2 j xyzk

S: z 4 x 2 y 2

F x, y, z z 2 i yj zk

z ≥ 0

S: z 9 x 2 y 2 ,

F x, y, z 4xzi yj 4xyk

z ≥ 0

S: z 1 x 2 y 2 ,

F x, y, z z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

C:

F x, y, z arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

C:

F x, y, z 2yi 3zj xk

C

C F

dr.

0 y a

0 x a,

S: z y 2 ,

F x, y, z z 2 i x 2 j y 2 k

S: 6x 6y z 12, primer octante

F x, y, z xyzi yj zk

S: z 1 x 2 y 2

F x, y, z y z i x z j x y k

z 0

S: z 9 x 2 y 2 ,

F x, y, z y z i x z j x y k

C

F

T ds

C

F

dr

F x, y, z arcsen yi 1 x 2 j y 2 k

F x, y, z e x2 y 2 i e y2 z 2 j xyzk

F x, y, z x sen yi y cos xj yz 2 k

F x, y, z 2zi 4x 2 j arctan xk

F x, y, z x 2 i y 2 j x 2 k

F x, y, z 2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

15.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate

Use a computer algebra system to verify your results. In each

case,

is oriented counterclockwise as viewed from above.

11.

triángulo cuyos vértices son

12.

triángulo cuyos vértices son

13.

14.

15.

16.

17.

over

in the first octant

18.

the first-octant portion of

over

19.

is the downward unit normal to the surface.

20.

the first-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

S:

x 2 y 2 a 2

F x, y, z xyzi yj zk,

N

0 y a

0 x a,

S: z x 2 ,

F x, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 16

F x, y, z yzi 2 3y j x 2 y 2 k,

r 2 sen 2

z 9 2x 3y

S:

F x, y, z ln x 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

F x, y, z x 2 i z 2 j xyzk

S: z 4 x 2 y 2

F x, y, z z 2 i yj zk

z ≥ 0

S: z 9 x 2 y 2 ,

F x, y, z 4xzi yj 4xyk

z ≥ 0

S: z 1 x 2 y 2 ,

F x, y, z z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

C:

F x, y, z arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

C:

F x, y, z 2yi 3zj xk

C

C F

dr.

0 y a

0 x a,

S: z y 2 ,

F x, y, z z 2 i x 2 j y 2 k

S: 6x 6y z 12, primer octante

F x, y, z xyzi yj zk

S: z 1 x 2 y 2

F x, y, z y z i x z j x y k

z 0

S: z 9 x 2 y 2 ,

F x, y, z y z i x z j x y k

C

F

T ds

C

F

dr

F x, y, z arcsen yi 1 x 2 j y 2 k

F x, y, z e x2 y 2 i e y2 z 2 j xyzk

F x, y, z x sen yi y cos xj yz 2 k

F x, y, z 2zi 4x 2 j arctan xk

F x, y, z x 2 i y 2 j x 2 k

F x, y, z 2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

15.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

Preparación del examen Putman

29. Sea

Demostrar o refutar que hay una función vectorial Fx, y, z

Mx, y, z,

con las propiedades siguientes.

i) tienen derivadas parciales continuas en todo

ii) Rot

para todo

iii)

Este problema fue preparado por el Committee on the Putnam Prize Competition.

© The Mathematical Association of America. Todos los derechos reservados.

Fx, y, 0 Gx, y.

x, y, z 0, 0, 0;

F 0

x, y, z 0, 0, 0;

P

N,

M,

Px, y, z

Nx, y, z,

Gx, y y

x 2 4y 2,

x

x 2 4y 2, 0 .

In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate

Use a computer algebra system to verify your results. In each

case,

is oriented counterclockwise as viewed from above.

11.

triángulo cuyos vértices son

12.

triángulo cuyos vértices son

13.

14.

15.

16.

17.

over

in the first octant

18.

the first-octant portion of

over

19.

is the downward unit normal to the surface.

20.

the first-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

S:

x 2 y 2 a 2

F x, y, z xyzi yj zk,

N

0 y a

0 x a,

S: z x 2 ,

F x, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 16

F x, y, z yzi 2 3y j x 2 y 2 k,

r 2 sen 2

z 9 2x 3y

S:

F x, y, z ln x 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

F x, y, z x 2 i z 2 j xyzk

S: z 4 x 2 y 2

F x, y, z z 2 i yj zk

z ≥ 0

S: z 9 x 2 y 2 ,

F x, y, z 4xzi yj 4xyk

z ≥ 0

S: z 1 x 2 y 2 ,

F x, y, z z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

C:

F x, y, z arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

C:

F x, y, z 2yi 3zj xk

C

C F

dr.

0 y a

0 x a,

S: z y 2 ,

F x, y, z z 2 i x 2 j y 2 k

S: 6x 6y z 12, primer octante

F x, y, z xyzi yj zk

S: z 1 x 2 y 2

F x, y, z y z i x z j x y k

z 0

S: z 9 x 2 y 2 ,

F x, y, z y z i x z j x y k

C

F

T ds

C

F

dr

F x, y, z arcsen yi 1 x 2 j y 2 k

F x, y, z e x2 y 2 i e y2 z 2 j xyzk

F x, y, z x sen yi y cos xj yz 2 k

F x, y, z 2zi 4x 2 j arctan xk

F x, y, z x 2 i y 2 j x 2 k

F x, y, z 2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

15.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

Para discusión

28. Verificar el teorema de Stokes para cada campo vectorial

dado y superficie orientada hacia arriba. ¿Es más fácil

establecer la integral de línea o la integral doble?, ¿de evaluar?

Explicar.

a)

C: cuadrado con vértices (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0)

b)

S: la porción del paraboloide z = x 2 + y 2 que yace abajo del

plano z = 4.

In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate

Use a computer algebra system to verify your results. In each

case,

is oriented counterclockwise as viewed from above.

11.

triángulo cuyos vértices son

12.

triángulo cuyos vértices son

13.

14.

15.

16.

17.

over

in the first octant

18.

the first-octant portion of

over

19.

is the downward unit normal to the surface.

20.

the first-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

S:

x 2 y 2 a 2

F x, y, z xyzi yj zk,

N

0 y a

0 x a,

S: z x 2 ,

F x, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 16

F x, y, z yzi 2 3y j x 2 y 2 k,

r 2 sen 2

z 9 2x 3y

S:

F x, y, z ln x 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

F x, y, z x 2 i z 2 j xyzk

S: z 4 x 2 y 2

F x, y, z z 2 i yj zk

z ≥ 0

S: z 9 x 2 y 2 ,

F x, y, z 4xzi yj 4xyk

z ≥ 0

S: z 1 x 2 y 2 ,

F x, y, z z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

C:

F x, y, z arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

C:

F x, y, z 2yi 3zj xk

C

C F

dr.

0 y a

0 x a,

S: z y 2 ,

F x, y, z z 2 i x 2 j y 2 k

S: 6x 6y z 12, primer octante

F x, y, z xyzi yj zk

S: z 1 x 2 y 2

F x, y, z y z i x z j x y k

z 0

S: z 9 x 2 y 2 ,

F x, y, z y z i x z j x y k

C

F

T ds

C

F

dr

F x, y, z arcsen yi 1 x 2 j y 2 k

F x, y, z e x2 y 2 i e y2 z 2 j xyzk

F x, y, z x sen yi y cos xj yz 2 k

F x, y, z 2zi 4x 2 j arctan xk

F x, y, z x 2 i y 2 j x 2 k

F x, y, z 2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

15.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate

Use a computer algebra system to verify your results. In each

case,

is oriented counterclockwise as viewed from above.

11.

triángulo cuyos vértices son

12.

triángulo cuyos vértices son

13.

14.

15.

16.

17.

over

in the first octant

18.

the first-octant portion of

over

19.

is the downward unit normal to the surface.

20.

the first-octant portion of

over

Motion of a Liquid

In Exercises 21 and 22, the motion of a

liquid in a cylindrical container of radius 1 is described by the

velocity field Find where is the

upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial derivatives,

and let and satisfy the conditions of Stokes’s

Theorem. Verify each identity.

a)

b) c)

26. Demonstrate the results of Exercise 25 for the functions

and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a

unit normal vector bounded by a smooth curve Prove that

S

C

N dS

1

2 C C r dr.

C.

N,

S

C

z 4 x 2 y 2 .

S

g x, y, z z.

f x, y, z

xyz

C f g g f dr 0

C f f dr 0

C f g dr S f g N dS

S

C

g

f

F x, y, z zi yk

F x, y, z i j 2k

S

S rot F

N dS,

F x, y, z .

x 2 y 2 a 2

z x 2

S:

x 2 y 2 a 2

F x, y, z xyzi yj zk,

N

0 y a

0 x a,

S: z x 2 ,

F x, y, z xyzi yj zk

x 2 y 2 16

x 2 z 2 16

S:

x 2 y 2 16

F x, y, z yzi 2 3y j x 2 y 2 k,

r 2 sen 2

z 9 2x 3y

S:

F x, y, z ln x 2 y 2 i arctan x y j k

S: z 4 x 2 y 2

F x, y, z x 2 i z 2 j xyzk

S: z 4 x 2 y 2

F x, y, z z 2 i yj zk

z ≥ 0

S: z 9 x 2 y 2 ,

F x, y, z 4xzi yj 4xyk

z ≥ 0

S: z 1 x 2 y 2 ,

F x, y, z z 2 i 2xj y 2 k

0, 0, 2

1, 1, 1 ,

0, 0, 0 ,

C:

F x, y, z arctan x y i ln x2 y 2 j k

0, 0, 2

0, 2, 0 ,

2, 0, 0 ,

C:

F x, y, z 2yi 3zj xk

C

C F

dr.

0 y a

0 x a,

S: z y 2 ,

F x, y, z z 2 i x 2 j y 2 k

S: 6x 6y z 12, primer octante

F x, y, z xyzi yj zk

S: z 1 x 2 y 2

F x, y, z y z i x z j x y k

z 0

S: z 9 x 2 y 2 ,

F x, y, z y z i x z j x y k

C

F

T ds

C

F

dr

F x, y, z arcsen yi 1 x 2 j y 2 k

F x, y, z e x2 y 2 i e y2 z 2 j xyzk

F x, y, z x sen yi y cos xj yz 2 k

F x, y, z 2zi 4x 2 j arctan xk

F x, y, z x 2 i y 2 j x 2 k

F x, y, z 2y z i e z j xyzk

15.8 Stokes’s Theorem 1137

15.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and

upward oriented surface. Is the line integral or the double

integral easier to set up? to evaluate? Explain.

(a)

square with vertices

(b)

the portion of the paraboloid

that lies

below the plane z 4

z x 2 y 2

S:

F x, y, z z 2 i x 2 j y 2 k

0, 1, 0

1, 1, 0 ,

1, 0, 0 ,

0, 0, 0 ,

C:

F x, y, z e y z i

CAPSTONE

29. Let

Prove or disprove that there is a vector-valued function

with the

following properties.

(i)

have continuous partial derivatives for all

(ii) Curl

for all

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.

© The Mathematical Association of America. All rights reserved.

F x, y, 0 G x, y .

x, y, z 0, 0, 0 ;

F 0

x, y, z 0, 0, 0 ;

P

N,

M,

Px, y, z

N x, y, z ,

F x, y, z M x, y, z ,

G x, y

y

x 2 4y 2, x

x 2 4y 2, 0 .

PUTNAM EXAM CHALLENGE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!