04.06.2022 Views

Calculo 2 De dos variables_9na Edición - Ron Larson

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

728 CAPÍTULO 10 Cónicas, ecuaciones paramétricas y coordenadas polares

Longitud de arco

En los ejercicios 45 a 48, dar una integral que

represente la longitud de arco de la curva en el intervalo dado.

No evaluar la integral.

Ecuaciones paramétricas

Intervalo

45.

46.

47.

48.

Longitud de arco

En los ejercicios 49 a 56, hallar la longitud de

arco de la curva en el intervalo dado.

Ecuaciones paramétricas

Intervalo

53.

54.

55.

56.

Longitud de arco

En los ejercicios 57 a 60, hallar la longitud de

arco de la curva en el intervalo

57. Perímetro de una hipocicloide:

58. Circunferencia de un círculo:

59. Arco de una cicloide:

60. Evolvente o involuta de un círculo:

61. Trayectoria de un proyectil La trayectoria de un proyectil se

describe por medio de las ecuaciones paramétricas

y

donde x y y se miden en pies.

a) Utilizar una herramienta de graficación para trazar la trayectoria

del proyectil.

b) Utilizar una herramienta de graficación para estimar el

alcance del proyectil.

c) Utilizar las funciones de integración de una herramienta de

graficación para aproximar la longitud de arco de la trayectoria.

Comparar este resultado con el alcance del proyectil.

62. Trayectoria de un proyectil Si el proyectil del ejercicio 61 se

lanza formando un ángulo

con la horizontal, sus ecuaciones

paramétricas son

y

Usar una herramienta de graficación para hallar el ángulo que

maximiza el alcance del proyectil. ¿Qué ángulo maximiza la

longitud de arco de la trayectoria?

63. Hoja (o folio) de Descartes Considerar las ecuaciones paramétricas

y

a) Usar una herramienta de graficación para trazar la curva

descrita por las ecuaciones paramétricas.

b) Usar una herramienta de graficación para hallar los puntos de

tangencia horizontal a la curva.

c) Usar las funciones de integración de una herramienta de

graficación para aproximar la longitud de arco del lazo cerrado.

(Sugerencia: Usar la simetría e integrar sobre el intervalo

64. Hechicera o bruja de Agnesi Considerar las ecuaciones paramétricas

y

a) Emplear una herramienta de graficación para trazar la curva

descrita por las ecuaciones paramétricas.

b) Utilizar una herramienta de graficación para hallar los puntos

de tangencia horizontal a la curva.

c) Usar las funciones de integración de una herramienta de

graficación para aproximar la longitud de arco en el intervalo

65. Redacción

a) Usar una herramienta de graficación para representar cada

conjunto de ecuaciones paramétricas.

b) Comparar las gráficas de los dos conjuntos de ecuaciones

paramétricas del inciso a). Si la curva representa el movimiento

de una partícula y t es tiempo, ¿qué puede inferirse

acerca de las velocidades promedio de la partícula en las

trayectorias representadas por los dos conjuntos de ecuaciones

paramétricas?

c) Sin trazar la curva, determinar el tiempo que requiere la

partícula para recorrer las mismas trayectorias que en los

incisos a) y b) si la trayectoria está descrita por

y

66. Redacción

a) Cada conjunto de ecuaciones paramétricas representa el movimiento

de una partícula. Usar una herramienta de graficación

para representar cada conjunto.

Primera partícula

Segunda partícula

b) Determinar el número de puntos de intersección.

c) ¿Estarán las partículas en algún momento en el mismo lugar

al mismo tiempo? Si es así, identificar esos puntos.

d) Explicar qué ocurre si el movimiento de la segunda partícula

se representa por

0 t 2.

y 2 4 cos t,

x 2 3 sin t,

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 32

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

y 3 cos t

y 4 sin t

x 4 sin t

x 3 cos t

y 1 cos 1 2 t.

x 1 2 t sin1 2 t 0 ≤ t ≤

0 ≤ t ≤ 2

y 1 cos2t

y 1 cos t

x 2t sin2t

x t sin t

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

y 4 sin 2 ,

x 4 cot

rcises 45–48, write an integral that repreof

the curve on the given interval. Do not

l.

rcises 49–56, find the arc length of the curve

l.

rcises 57–60, find the arc length of the curve

imeter:

nce:

le:

ile

The path of a projectile is modeled by the

ions

and

e measured in feet.

ng utility to graph the path of the projectile.

ing utility to approximate the range of the

gration capabilities of a graphing utility to

the arc length of the path. Compare this result

e of the projectile.

ectile

If the projectile in Exercise 61 is

angle

with the horizontal, its parametric

and

utility to find the angle that maximizes the

ectile. What angle maximizes the arc length of

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

y 90 sin 30 t 16t 2

t

x cos sin , y sin cos

a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

].

1 t 2

1

6t 3 0 t 1

t 1

0 t

1

2

ln 1 t 2 0 t

2

e t sen t

1 t 0

4t 3 3

1 t 4

t 3 0 t 2

1 t 3

7 2t

Interval

tions

0 t

y t cos t

2 t 2

2t 1

1 t 5

t 3

1 t 3

2t 3 2

Interval

tions

0 Conics, Parametric Equations, and Polar Coordinates

y 4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y 90 sin 30t 16t 2

x 90 cos 30t

x cos

sin , y sin

cos

x a sin , y a1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2].

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 32

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

x t, y t 5

10 1

6t 3

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

x t, y 3t 1

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

x arcsin t, y ln1 t 2

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

x e t cos t, y e t sin t

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

sen

arcsen

sen

sen

sen

sen

sen

sen

sen

sen

sen

sen

sen

sen 2

sen t,

sen

Arc Length

In Exercises 45–48, write an integral that represents

the arc length of the curve on the given interval. Do not

evaluate the integral.

45.

46.

47.

48.

Arc Length

In Exercises 49–56, find the arc length of the curve

on the given interval.

49.

50.

51.

52.

53.

54.

55.

56.

Arc Length

In Exercises 57–60, find the arc length of the curve

on the interval

57. Hypocycloid perimeter:

58. Circle circumference:

59. Cycloid arch:

60. Involute of a circle:

61. Path of a Projectile The path of a projectile is modeled by the

parametric equations

and

where and are measured in feet.

(a) Use a graphing utility to graph the path of the projectile.

(b) Use a graphing utility to approximate the range of the

projectile.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the path. Compare this result

with the range of the projectile.

62. Path of a Projectile If the projectile in Exercise 61 is

launched at an angle

with the horizontal, its parametric

equations are

and

Use a graphing utility to find the angle that maximizes the

range of the projectile. What angle maximizes the arc length of

the trajectory?

63. Folium of Descartes Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility to

approximate the arc length of the closed loop.

Hint: Use

symmetry and integrate over the interval

64. Witch of Agnesi Consider the parametric equations

and

(a) Use a graphing utility to graph the curve represented by the

parametric equations.

(b) Use a graphing utility to find the points of horizontal

tangency to the curve.

(c) Use the integration capabilities of a graphing utility

to approximate the arc length over the interval

65. Writing

(a) Use a graphing utility to graph each set of parametric

equations.

(b) Compare the graphs of the two sets of parametric equations

in part (a). If the curve represents the motion of a particle

and is time, what can you infer about the average speeds

of the particle on the paths represented by the two sets of

parametric equations?

(c) Without graphing the curve, determine the time required for

a particle to traverse the same path as in parts (a) and (b) if

the path is modeled by

and

66. Writing

(a) Each set of parametric equations represents the motion of a

particle. Use a graphing utility to graph each set.

(b) Determine the number of points of intersection.

(c) Will the particles ever be at the same place at the same

time? If so, identify the point(s).

(d) Explain what happens if the motion of the second particle

is represented by

0 t 2 .

y 2 4 cos t,

x 2 3 sin t,

0 t 2

0 t 2

y

3 cos t

y

4 sin t

x

4 sin t

x

3 cos t

Second Particle

First Particle

y 1 cos 1 2t .

x

1

2t

sin 1 2t

t

0 t

0 t 2

y 1 cos 2t

y 1 cos t

x 2t sin 2t

x t sin t

4 2.

2 2 .

y 4 sin2 ,

x

4 cot

0 t 1.

y

4t 2

1 t 3.

x

4t

1 t 3

y 90 sin t 16t 2 .

x 90 cos t

y

x

y 90 sin 30 t 16t 2

x

90 cos 30 t

x cos sin , y sin cos

x a sin , y a 1 cos

x a cos , y a sin

x a cos 3 , y a sin 3

[0, 2 ].

1 t 2

x t, y

t 5

10

1

6t 3 0 t 1

x t, y 3t 1

0 t

1

2

x arcsen t, y ln 1 t 2 0 t

2

x e t cos t, y e t sen t

1 t 0

x t 2 1, y 4t 3 3

1 t 4

x 6t 2 , y 2t 3 0 t 2

x t 2 , y 2t

1 t 3

x 3t 5, y 7 2t

Interval

Parametric Equations

0 t

y t cos t

x t sen t,

2 t 2

y 2t 1

x e t 2,

1 t 5

y 4t 3

x ln t,

1 t 3

y 2t 3 2

x 3t t 2 ,

Interval

Parametric Equations

728 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!