15.01.2013 Views

U. Glaeser

U. Glaeser

U. Glaeser

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

E nfog (z)<br />

E C (z)<br />

FIGURE 41.3<br />

FIGURE 41.4<br />

V S<br />

V Source<br />

In the first approximation, take E = ( Vd<br />

− Vs)<br />

/ L,<br />

where Vd,<br />

Vs,<br />

and L are the drain voltage, the source<br />

voltage, and the gate channel length. The total charge can be approximated as Q = WCo∆V,<br />

where W and<br />

Co<br />

are the channel width and the oxide capacitance of the actual corresponding MOSFET transistor,<br />

respectively. Now, ∆V<br />

corresponds to the voltage difference between the average water surface ( Vd<br />

+ Vs)<br />

/ 2<br />

and the channel potential Vch<br />

= ( Vg<br />

− Vth).<br />

That is, ∆V<br />

= ( Vd<br />

+ Vs)<br />

/ 2 − Vch.<br />

Hence, since Q = WCo∆V,<br />

the equivalent amount Q of the water (or<br />

charge) under the gate is given as Q = [( V + ) / 2 − ], where = ( V − ), E = ( V − ) / L.<br />

© 2002 by CRC Press LLC<br />

<br />

MOSFET at Onset VG<br />

= Vth.<br />

Vch<br />

V th (V BB ,V S ) = V FB + {B + V S − V BB } + γ<br />

V FB = V BB − (kT/q) In{ N c N A /n i 2 } − {χsi − φm }/q + Q SS /C OX<br />

K = q ε Si N A /C 2 OX<br />

Source gate<br />

Drain<br />

n+<br />

p-Si<br />

n+<br />

kT In(N c /N d + )<br />

dQ<br />

MOSFET I-V characteristics.<br />

0<br />

e−<br />

q ∆ V<br />

L<br />

WC<br />

o<br />

V Gate<br />

d<br />

<br />

VSf (x)<br />

= (V Drain + V Source)/2<br />

γ = 2K<br />

V<br />

s<br />

V G = V th (V BB ,V S )<br />

φ S (inv)<br />

V BB′<br />

V<br />

ch<br />

{B + V S − V BB }<br />

VDrain<br />

Q = WCo {Vch − }<br />

= WCo {VGate − Vth − (VDrain + VSource)/2} B = 2(kT/q) In(N A /n i )<br />

L<br />

V<br />

ch<br />

z<br />

I = µQE<br />

I = (W/2L) µCo{2(VG − Vth) − (VDrain + VSource)} (VDrain − VSource) ISat = (W/2L) µCo(VDrain − VSource) 2 for VG > (VDrain + Vth)<br />

g<br />

<br />

E = (V Drain − V Source)/L<br />

Q = WC o ∆V<br />

V<br />

th<br />

z<br />

E nfog (z)<br />

Vch = (VGate − Vth)<br />

E C (z)<br />

V D<br />

= WC o (V ch - V Sf)<br />

d<br />

V<br />

s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!