15.01.2013 Views

U. Glaeser

U. Glaeser

U. Glaeser

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The EER is the BER divided by the number of bit errors in the dominant error event. In Eq. (34.15) Q<br />

refers to the well-known Q function defined by<br />

Signal Gain (KPD) of the Phase Detector<br />

Using the definition of KPD, for a constant sampling phase error τ,<br />

© 2002 by CRC Press LLC<br />

(34.16)<br />

E{ tsˆ ( k)s(<br />

k)<br />

+ n( k)sˆ(<br />

k)<br />

}<br />

E{ n( k)sˆ(<br />

k)<br />

}<br />

KPD = ----------------------------------------------------------- = E{ sˆ ( k)s(<br />

k)<br />

} + ------------------------------ (34.17)<br />

t<br />

t<br />

Consider E{ n( k)sˆ(<br />

k)<br />

}, where sˆ ( k)<br />

is a linear function of the data bits, which can be realistically assumed<br />

to be uncorrelated with the noise n(k). Therefore, this term is zero and as we should expect, the noise<br />

does not contribute to the mean phase detector output. Thus,<br />

(34.18)<br />

If d is uncoded, hence white, with zero mean, E{ d( k– b)d(<br />

k– c)<br />

}<br />

Consequently, the KPD is<br />

= sd if b = c and is 0 if b ≠ c.<br />

(34.19)<br />

where it is assumed that slope table ouput is based on fewer than C 1 + C 2 + 1 terms to reduce the<br />

summation to be from b = −B 1 to B 2. We note that the KPD values obtained here are equivalent to the<br />

slopes of the f(τ) versus τ curve plotted in Fig. 34.24.<br />

Output Noise of the Phase Detector<br />

Computing the autocorrelation,<br />

Q( x)<br />

KPD = E{ sˆ ( k)s(<br />

k)<br />

} =<br />

E n o k<br />

1<br />

= -----<br />

2p<br />

B 2<br />

∑<br />

∫<br />

x<br />

Because sˆ ( k)<br />

is a filtered version of d(k), which is uncorrelated with n, n and sˆ are uncorrelated. Therefore,<br />

(34.20)<br />

With d being uncoded (hence white) and zero mean, E{ d(k– b)d(k+<br />

l– b′) } = sd if b′ = b + l and<br />

2<br />

0 if b′ ≠ b + l. Also assuming, Rn(l) = snd[] l , i.e., n to be white, we need to consider only l = 0 in which<br />

case we have b = b′. In that case,<br />

∞<br />

C 2 −1<br />

∑<br />

b=−B1 c=−C1 2<br />

KPD = sd y 2<br />

--exp<br />

⎛ ⎞<br />

⎝ 2 dy<br />

⎠<br />

y( b)y(<br />

c)E{<br />

d( k– b)d(<br />

k– c)<br />

}<br />

B 2<br />

∑<br />

b=−B 1<br />

y 2 ( b)<br />

{ ( )no( k+ l)<br />

} = E{ n( k)sˆ(<br />

k)n(<br />

k+ 1)sˆ(<br />

k+ l)<br />

}<br />

{ ( )no( k+ l)<br />

} = E{ n( k)n(<br />

k+ l)<br />

}E{ sˆ ( k)sˆ(<br />

k+ l)<br />

}<br />

E n o k<br />

B 2<br />

∑<br />

= Rn()E l { sˆ ( k)sˆ(<br />

k+ l)<br />

}<br />

B 2<br />

∑<br />

E{ sˆ ( k)sˆ(<br />

k+ l)<br />

} = y( b)y(<br />

b′ )E{ d( k– b)d(<br />

k+ l– b′ ) }<br />

E n o k<br />

b=−B1 b′=−B1 { ( )no( k+ l)<br />

} =<br />

sn 2 sd<br />

B 2<br />

∑<br />

2 2<br />

d[] l y ( b)<br />

b=−B 1<br />

2<br />

2<br />

(34.21)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!