15.01.2013 Views

U. Glaeser

U. Glaeser

U. Glaeser

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where ‘ ∗’<br />

denotes (discrete) convolution. Similarly, for the continuous case,<br />

The 3-D Fourier Transform<br />

The 3-D continuous Fourier transform can be expressed as<br />

where ξx,<br />

ξy,<br />

and ξt<br />

are the spatiotemporal frequency variables and f(<br />

x,<br />

y,<br />

poral signal. As in the 2-D case, the 3-D Fourier transform is separable:<br />

Also as in the 1-D and 2-D cases, if<br />

then<br />

© 2002 by CRC Press LLC<br />

(28.3)<br />

(28.4)<br />

t)<br />

is a continuous spatiotem-<br />

(28.5)<br />

(28.6)<br />

(28.7)<br />

If h(<br />

x,<br />

y,<br />

t)<br />

is the LSI system impulse response, then H(<br />

ξx,<br />

ξy, ξt) is the frequency response of the system.<br />

The spatiotemporal discrete Fourier transform is defined as<br />

where 0 ≤ h, k, l ≤ N − 1 and WN = .<br />

The inverse transform is<br />

where 0 ≤ m, n, p ≤ N − 1.<br />

g( x, y, t)<br />

= f( x′, y′, t′ )h( x– x′, y– y′, t– t′ ) dx′ dy′ dt′<br />

Moving Images in the Frequency Domain<br />

∫<br />

∞<br />

(28.8)<br />

(28.9)<br />

Following the discussion in [2], a moving monochrome image can be represented by an intensity<br />

distribution f(x, y, t). The image is static if f(x, y, t) = f(x, y, 0) for all t. The velocity of the image can be<br />

expressed via the image velocity vector<br />

If the (initially static) image translates at a constant velocity r,<br />

then<br />

∫<br />

∞<br />

∫<br />

∞<br />

– ∞ – ∞ – ∞<br />

∫<br />

( )e j2π(xξ ∞ ∞ ∞<br />

– x + yξy + tξt )<br />

∫ ∫ – ∞ – ∞ – ∞<br />

F( ξx, ξy, ξt) = f x, y, t<br />

∫<br />

∞<br />

∫<br />

∞<br />

F( ξx, ξy, ξt) f( x, y, t)e<br />

j2πxξ x<br />

=<br />

dx<br />

– ∞<br />

– ∞<br />

∫<br />

∞<br />

– ∞<br />

g( x, y, t)<br />

= h( x, y, t)<br />

∗ f( x, y, t)<br />

–<br />

e j2πyξ – y<br />

G( ξx, ξy, ξt) = H( ξx, ξy, ξt)F( ξx, ξy, ξt) N−1 N−1 N−1<br />

∑∑∑<br />

v( h, k, l)<br />

= u( m, n, p)<br />

u( m, n, p)<br />

e j2π/N –<br />

m=0 n=0 p=0<br />

N−1 N−1 N−1<br />

1<br />

= ----- v( h, k, l)WN<br />

∑∑∑<br />

N 3<br />

h=0 k=0 l=0<br />

r = ( rx, ry) dxdydt dy<br />

hm kn lp<br />

WN WN WN<br />

fr( x, y, t)<br />

=<br />

f( x– rxt, y– ryt, t)<br />

– hm – kn – lp<br />

WN WN<br />

e j2πtξ – t<br />

dt<br />

(28.10)<br />

(28.11)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!