12.07.2015 Views

Numerical Mathematics - A Collection of Solved Problems

Numerical Mathematics - A Collection of Solved Problems

Numerical Mathematics - A Collection of Solved Problems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PROBLEM NAJBOLJIH APROKSIMACIJA 227odakle je(4) I 2n+2 = 1 − αα 2(2n + 1) I 2n .S obzirom da jeI 0 =na osnovu (4) dobijamoZ +∞−∞e −αx2 dx = √ 1 Z +∞rπe −t2 dt = α α ,−∞(5)I 2n =Z +∞−∞e −αx2 H 2n (x)dx (α > 0)„ « n r1 − α= 2 n π(2n − 1)!!αα„ « n r1 − α (2n)! π=α n! α .Izračunajmo sada skalarni proizvod(f, H 2n+1 ) =ili opštijeZ +∞−∞J 2n+1 =e −x2 x e x2 /4 H2n+1 (x)dx =Z +∞−∞Korišćenjem relacije (3), imamoJ 2n+1 =Z +∞−∞Z +∞−∞xe −αx2 H 2n+1 (x)dx (α > 0) .x e −3x2 /4 H2n+1 (x)dx ,e»(2n −αx2 + 1)H 2n (x) + 1 –2 H 2n+2(x) dx= (2n + 1) I 2n + 1 2 I 2n+2 ,pa na osnovu (5), dobijamo„ « n r1 − α (2n + 1)! πα .(6) J 2n+1 = 1 ααn!S obzirom da je(H k , H k ) = ‖H k ‖ 2 = 2 k k! √ π ,na osnovu (2) i korišćenjem relacije (6) za α = 3/4, dobijamoC 2n+1 = 4√ 39 · 12 n n!(n = 0,1, . . . ) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!